Answer:
(I). The effective cross sectional area of the capillaries is 0.188 m².
(II). The approximate number of capillaries is 
Explanation:
Given that,
Radius of aorta = 10 mm
Speed = 300 mm/s
Radius of capillary 
Speed of blood 
(I). We need to calculate the effective cross sectional area of the capillaries
Using continuity equation

Where. v₁ = speed of blood in capillarity
A₂ = area of cross section of aorta
v₂ =speed of blood in aorta
Put the value into the formula



(II). We need to calculate the approximate number of capillaries
Using formula of area of cross section


Put the value into the formula


Hence, (I). The effective cross sectional area of the capillaries is 0.188 m².
(II). The approximate number of capillaries is 
"Describing how copper changes color in chlorine" is the answer I think is right. Hope this helped!
The correct option is B. More mass
Hope this helps you
Brainliest would be appreciated
-AaronWiseIsBae
Answer: 6,400 km
Explanation:
The weight of a person is given by:

where m is the mass of the person and g is the acceleration due to gravity. While the mass does not depend on the height above the surface, the value of g does, following the formula:

where
G is the gravitational constant
M is the Earth's mass
r is the distance of the person from the Earth's center
The problem says that the person weighs 800 N at the Earth's surface, so when r=R (Earth's radius):
(1)
Now we want to find the height h above the surface at which the weight of the man is 200 N:
(2)
If we divide eq.(1) by eq.(2), we get


By solving the equation, we find:

which has two solutions:
--> negative solution, we can ignore it
--> this is our solution
Since the Earth's radius is
, the person should be at
above Earth's surface.