Answer:
correct is d) a ’= g / 2
Explanation:
For this exercise let's use the kinematics equations
On earth
v = v₀ - a t
a = (v₀- v) / T
On planet X
v = v₀ - a' t’
a ’= (v₀-v) / 2T
Let's substitute the land values in plot X
a’= a / 2
Now let's use Newton's second law
W = ma
m g = m a
a = g
We substitute
a ’= g / 2
So we see that on planet X the acceleration is half the acceleration of Earth's gravity
7200 joules of heat and light energy was dissipated into the air. But no work was done ... no force moved through no distance.
Answer:
Explanation:
a = F/m = 7500/2000 = 3.75 m/s²
v² = u² + 2as
s = (v² - u²) / 2a
s = (0² - 45²) / (2(-3.75))
s = 270 m
Answer:
W= 4.89 KJ
Explanation:
Lets take
temperature of hot water T₁ = 100⁰C
T₁ = 373 K
Temperature of cold ice T₂= 0⁰C
T₂ = 273 K
The latent heat of ice LH= 334 KJ
The heat rejected by the engine Q= m .LH
Q₂= 0.04 x 334
Q₂= 13.36 KJ
Heat gain by engine = Q₁
For Carnot engine


Q₁ = 18.25 KJ
The work W= Q₁ - Q₂
W= 18.25 - 13.36 KJ
W= 4.89 KJ