Hello!
Your answer would be polar covalent.
Covalent bonds are where two atoms come together, and share electrons between each other, and are therefore, bonded.
In some cases of molecules that are bonded with a covalent bond, one of the atoms is more, you could call it selfish, and takes more of the electrons. A prime example of this is H20, or water. One of the atoms takes the electrons for longer, and therefore has a more negative charge because electrons are counted as negative charges.
This bond where an atom "hogs" electrons, is called a polar covalent bond, respective to the changing charges for the atoms.
So your answer is d.
Hope this helped!
Answer:
Kp = 0.049
Explanation:
The equilibrium in question is;
2 SO₂ (g) + O₂ (g) ⇄ 2 SO₃ (g)
Kp = p SO₃² / ( p SO₂² x p O₂ )
The initial pressures are given, so lets set up the ICE table for the equilibrium:
atm SO₂ O₂ SO₃
I 3.3 0.79 0
C -2x -x 2x
E 3.3 - 2x 0.79 - x 2x
We are told 2x = partial pressure of SO₃ is 0.47 atm at equilibrium, so we can determine the partial pressures of SO₂ and O₂ as follows:
p SO₂ = 3.3 -0.47 atm = 2.83 atm
p O₂ = 0.79 - (0.47/2) atm = .56 atm
Now we can calculate Kp:
Kp = 0.47² /[ ( 2.83 )² x 0.56 ] = 0.049 ( rounded to 2 significant figures )
Note that we have extra data in this problem we did not need since once we setup the ICE table for the equilibrium we realize we have all the information needed to solve the question.
Positron emission = emission of a positron and a neutrino when a
proton is convert into a neutron. The total number of particles in the
nucleus doesn't change, -1 proton +1 neutron
It's a spontaneous reaction for some nucleus.
eg:
Positron = e+
Neutrino=ve
O-15 --> N-15 + e+ +ve
Electron
capture= A nucleus absorb an electron while a proton is convert in a
neutron and emit a neutrino. The total number of particles in the
nucleus doesn't change, -1 proton +1 neutron
eg:
Al-26 +e- --> Mg-26 + ve
Electron
capture and positron emission are two mechanisms to explain the decay
of some unstable isotopes. Electron capture is usually observed when the
energy difference between the initial and final state is low. Mainly
because of the larger amount of kinetic energy need for the expulsion
two particles with the positron emission mechanism.
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26
Answer:
it is II and III
Explanation:
because according to the kinetic theory gas particles are always in constant motion and they will not bond and will bounce off each other