Answer:
f = 10 Hz
Explanation:
We need to find the frequency of a wave if 10 waves go past in 1 second. Total number of waves per unit time is called frequency. So,

So, the frequency of a wave is 10 Hz.
Answer:
Explanation:
the higher up on the Main Sequence the star is, the shorter it lives. The smaller main sequence stars have low luminosities and low surface temperatures. These stars take a very long time to fuse hydrogen into helium and will therefore live a very long life.
Answer:
total momentum = 8.42 kgm/s
velocity of the first cart is 3.660 m/s
Explanation:
Given data
mass m1 = 2.3 kg
mass m2 = 1.5 kg
final velocity V2 = 4.9 m/s
final velocity V3 = - 1.9 m/s
to find out
total momentum and velocity of the first cart
solution
we know mass and final velocty
and initial velocity of second cart V1 = 0
so now we can calculate total momentum that is m1 v2 + m2 v2
total momentum = 2.3 ×4.9 + 1.5 ×(-1.9)
total momentum = 8.42 kgm/s
and
conservation of momentum is
m1 V + m2 v1 = m1 v2 + m2 v3
put all value and find V
2.3 V + 1.5 ( 0) = 2.3 ( 4.9 ) + 1.5 ( -1.9)
V = 8.42 / 2.3
V = 3.660 m/s
so velocity of the first cart is 3.660 m/s
<span>The statement that best describes how metallic bond properties are important for making and using paperclips is Ductility is important for making paperclips, and malleability is important for using them.
Ductility is defined as the ability of the solid material to stretch under tensil stress. The metal of the paper clip is ductile when paperclips are made because the metal is stretch until it forms a wire.
Malleability is defined as the ability of the solid material to deform under pressure. Paperclips are very malleable. It can be manipulated into forming different shapes with the used of our hand strength.
</span>