1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
3 years ago
7

What is the difference in KE between a 52.5 kg person running 3.50 m/s and a 0.0200 kg bullet flying 450 m/s?

Physics
1 answer:
rusak2 [61]3 years ago
8 0

Answer:

Ek = 1705.28 [J]

Explanation:

In order to solve this problem, we must remember that kinetic energy can be calculated by means of the following equation.

E_{k}=\frac{1}{2} *m*v^{2}

where:

m = mass [kg]

v = velocity [m/s]

Ek = kinetic energy [J] (Units of Joules)

<u>For the person running</u>

<u />E_{k} =\frac{1}{2}*52.2*(3.5)^{2} \\ E_{k} =319.72[J]<u />

<u />

<u>For the bullet</u>

<u />E_{k} =\frac{1}{2} *m*v^{2}<u />

<u />E_{k} =\frac{1}{2} *0.02*(450)^{2} \\E_{k}=2025 [J]<u />

<u />

The difference in Kinetic energy is equal to:

Ek = 2025 - 319.72

Ek = 1705.28 [J]

You might be interested in
The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that
pav-90 [236]

Answer:

The permittivity of rubber is  \epsilon  = 8.703 *10^{-11}

Explanation:

From the question we are told that

     The  magnitude of the point charge is  q_1 =  70 \ nC  =  70 *10^{-9} \  C

      The diameter of the rubber shell is  d = 32 \ cm  =  0.32 \ m

       The Electric field inside the rubber shell is  E =  2500 \ N/ C

The radius of the rubber is  mathematically evaluated as

              r =  \frac{d}{2} =  \frac{0.32}{2}  =  0.16 \ m

Generally the electric field for a point  is in an insulator(rubber) is mathematically represented as

         E =  \frac{Q}{ \epsilon }  *  \frac{1}{4 *  \pi r^2}

Where \epsilon is the permittivity of rubber

    =>     E  *  \epsilon  *  4 * \pi *  r^2 =  Q

   =>      \epsilon  =  \frac{Q}{E *  4 *  \pi *  r^2}

substituting values

            \epsilon  =  \frac{70 *10^{-9}}{2500 *  4 *  3.142 *  (0.16)^2}

            \epsilon  = 8.703 *10^{-11}

7 0
3 years ago
A bicyclist of mass 112 kg rides in a circle at a speed of 8.9 m/s. If the radius of the circle is 15.5 m, what is the centripet
kogti [31]
The centripetal force, Fc, is calculated through the equation, 
                                    Fc = mv²/r
where m is the mass,v is the velocity, and r is the radius. 
Substituting the known values,
                                     Fc = (112 kg)(8.9 m/s)² / (15.5 m)
                                         = 572.36 N
Therefore, the centripetal force of the bicyclist is approximately 572.36 N. 
4 0
3 years ago
Read 2 more answers
A baseball leaves a bat with a horizontal velocity of 20 m/s. In a time of 0.25 s, How far will it have traveled horizontally?
Maurinko [17]

Distance traveled by the ball is given by

distance = speed \times time

here we know that

speed = 20 m/s

times = 0.25 s

now we have

distance = 20 \times 0.25

distance = 5 m

so ball will travel 5 m distance in the given interval of time

6 0
3 years ago
When the current in a toroidal solenoid is changing at a rate of 0.0240 A/s , the magnitude of the induced emf is 12.4 mV . When
Gemiola [76]

Answer:

The number of turns in the solenoid is 230.

Explanation:

Given that,

Rate of change of current, \dfrac{dI}{dt}=0.0240\ A/s

Induced emf, \epsilon=12.4\ mV=12.4\times 10^{-3}\ V

Current, I = 1.5 A

Magnetic flux, \phi=0.00338\ Wb

The induced emf through the solenoid is given by :

\epsilon=L\dfrac{dI}{dt}

or

L=\dfrac{\epsilon}{(di/dt)}........(1)

The self inductance of the solenoid is given by :

L=\dfrac{N\phi}{I}.........(2)

From equation (1) and (2) we get :

\dfrac{\epsilon}{(di/dt)}=\dfrac{N\phi}{I}

N is the number of turns in the solenoid

N=\dfrac{\epsilon I}{\phi (dI/dt)}

N=\dfrac{12.4\times 10^{-3}\times 1.5}{0.00338 \times 0.024}

N = 229.28 turns

or

N = 230 turns

So, the number of turns in the solenoid is 230. Hence, this is the required solution.

3 0
3 years ago
An object is allowed to fall freely near the surface of an unknown planet. The object falls 72 meters from rest in 4.0 seconds.
dimaraw [331]
<span>it fairly is going to attain a speed of 24 m/s in a 2d, yet between t = 0 and t = a million, it fairly is not any longer vacationing at that speed, yet at slower speeds. it fairly is 12 meters. ?D = [ ( a?T^2 + 2?Tv_i ) ] / 2 the place: ?D = displacement a = acceleration ?T = elapsed time v_i = preliminary speed ?D = [ ( 24m/s^2 • 1s • 1s + 2 • 1s • 0m/s ) ] / 2 ?D = 24 / 2 ?D = 12m</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • A 0.050 kilogram bullet is fired from a 4.0 kilogram rifle which is initially at
    10·1 answer
  • According to freud what part of the mind is concerned with morals and ethics
    6·1 answer
  • Which of the following occurs when a liquid’s thermal energy is increased?
    15·1 answer
  • Order the sequence of ideas that led to Marie Curie’s discovery of radioactive elements. Number the events in chronological orde
    8·1 answer
  • what magnetic field is needed to exert a force of 0.4N on a 0.1m long conductor if it carries a current of 2A perpendicular to t
    5·1 answer
  • 16. Why does the number of carts matter when designing a roller coaster track? (Hint: PE = mass x gravity x height and KE = /2 m
    7·1 answer
  • a tuck at rest starts to move and accelerated by 4m/s in 25 secondd. what is the velocity of the truck at the end offf the time?
    15·2 answers
  • A car originally at rest reaches 40m/s after accelerating for 50s. Calculate its acceleration
    15·1 answer
  • A ball is thrown from a top of a building of height 20m. If the initial velocity of the ball is 15m/s at 370 above the horizonta
    15·1 answer
  • What is the net work doneon the object over the distance shown?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!