Answer: (d)
Explanation:
Given
Mass of object 
Speed of object 
Mass of object at rest 
Suppose after collision, speed is v
conserving momentum

Initial kinetic energy

Final kinetic energy

So, it is clear there is decrease in kinetic energy . Thus, energy decreases and velocity becomes 2 m/s.
Titty milk I think because it taste amazing so you can go 21km/h
The final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =

- Final velocity of the second astronaut, =

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

if v₂ > v₁, then
, to conserve the linear momentum.
Thus, the final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291
Answer:
Explanation: nigerian what
Answer:
i) Telescopes can be used to view far distant objects but the human eye can't view far distant objects.
ii) Telescopes uses two convex lenses producing a magnified image while the human eye only possesses one convex lens (image seen are smaller than that viewed under telescopes)
Explanation:
The telescopes can be used to view far distant objects due to their presence of two convex lenses. The two convex lenses are the objective lens (lens closer to object) and the eye piece lens (lens closer to eye). The object to be viewed forms an intermediate image first before the final image is seen using the eye piece lens.
The human eye only possess one convex lens and as such cannot view far ranged objects.