Answer:
Capacitance of cylindrical capacitor does not depends on the amount of charge on the conductors
Explanation:
Consider a cylindrical capacitor of length L, inner radius R₁ and outer radius R₂, permitivity ε₀ constant then capacitance of cylindrical capacitor is given by:
From this equation it is clear that capacitance of cylindrical capacitor is independent of the amount of charge on the conductors where as directly proportional permitivity constant and length of cylinder where as inversely proportional to natural log of ratio of R₂ and R₁
Answer: K.E = 0.4 J
Explanation:
Given that:
M = 1.0 kg
h = 0.04 m
K.E = ?
According to conservative of energy
K.E = P.E
K.E = mgh
K.E = 1 × 9.81 × 0.04
K.E = 0.3924 Joule
The kinetic energy of the pendulum at the lowest point is 0.39 Joule
Answer:
69.68 N
Explanation:
Work done is equal to change in kinetic energy
W = ΔK = Kf - Ki = 
W = 
where m = mass of the sprinter
vf = final velocity
vi = initial velocity
W = workdone
kf = final kinetic energy
ki = initial kinetic energy
d = distance traveled
Ftotal = total force
vf = 8m/s
vi= 2m/s
d = 25m
m = 60kg
inserting parameters to get:
W = ΔK = Kf - Ki = 



= 39.7
we know that the force the sprinter exerted F sprinter, the force of the headwind Fwind = 30N

The correct option is (D) Gamma (

)
Explanation:Now this question is a tricky one because all of these options are somehow involved in radioactive decay; however, in this case the SYMBOL is required NOT the elements. There are three symbols involved in radioactive decay, which are:
1. α for alpha decay
2. β for beta decay
3. γ for gamma decay
In the options only one symbol is present which is
gamma. Hence option (D) Gamma ( 
) is the correct answer.
-i
The correct answer is: They possess high concentrations of free electrons
The main characteristic of good conductors such as metals is the presence of movable electrically charged particles, or electrons. So, when an electric current is applied to a metal, the electrons will move and allow electricity to pass through them. Materials opposite of metals, with low electron mobility are not good conductors, instead they are called insulators.