Answer:
The rain falling in New England is 2.29 times more acidic than the one in the American Midwest.
Explanation:
The acidity of a solution depends on the concentration of H⁺ ions ([H⁺]). We can calculate this concentration from the pH using the following expression.
pH = -log ([H⁺])
American Midwest
pH = -log ([H⁺])
5.02 = -log ([H⁺])
[H⁺] = antilog (-5.02) = 9.55 × 10⁻⁶ M
New England
pH = -log ([H⁺])
4.66 = -log ([H⁺])
[H⁺] = antilog (-4.66) = 2.19 × 10⁻⁵ M
The ratio of concentrations is:

The rain falling in New England is 2.29 times more acidic than the one in the American Midwest.
The number of chlorine atoms present on the product side of the reaction is 6
<h3>What is a chemical equation? </h3>
Chemical equations are representations of chemical reactions using symbols and formula of the reactants and products.
The balancing of chemical equations follows the law of conservation of matter which states that matter can neither be created nor destroyed during a chemical reaction but can be transferred from one form to another.
<h3>How to determine the number of atoms of Cl</h3>
2Al + 6HCl → 2AlCl₃ + 3H₂
Products => AlCl₃ and H₂
Number of Cl atoms = 2 × 3
Number of Cl atoms = 6 atoms
Learn more about chemical equation:
brainly.com/question/7181548
#SPJ4
Answer:
Individually well, defined identical chemically units such as molecules, ions, atoms, or electrons
Explanation:
The mole is used as the unit of measurement for substance such as molecules, ions, atoms, or electrons. One mole of a substance is equivalent to 6.02×10²³ particles of the substance. The number, 6.02 × 10²³ is known as Avogadro's number.
The particles quantified as moles are individually well, defined identical chemically units such that the mole can be used to describe a part of a substance or the whole substance consisting of several moles of the substance combined.
Answer:
Muscular contractions that moves food along the digestive tract.
This question is describing the following chemical reaction at equilibrium:

And provides the relative amounts of both A and B at 25 °C and 75 °C, this means the equilibrium expressions and equilibrium constants can be written as:

Thus, by recalling the Van't Hoff's equation, we can write:

Hence, we solve for the enthalpy change as follows:

Finally, we plug in the numbers to obtain:
![\Delta H=\frac{-8.314\frac{J}{mol*K} *ln(0.25/9)}{[\frac{1}{(75+273.15)K} -\frac{1}{(25+273.15)K} ] } \\\\\\\Delta H=4,785.1\frac{J}{mol}](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Cfrac%7B-8.314%5Cfrac%7BJ%7D%7Bmol%2AK%7D%20%2Aln%280.25%2F9%29%7D%7B%5B%5Cfrac%7B1%7D%7B%2875%2B273.15%29K%7D%20-%5Cfrac%7B1%7D%7B%2825%2B273.15%29K%7D%20%5D%20%7D%20%5C%5C%5C%5C%5C%5C%5CDelta%20H%3D4%2C785.1%5Cfrac%7BJ%7D%7Bmol%7D)
Learn more: