Answer:
h. both Mg(OH)₂ and CaCO₃
Explanation:
Let's consider the solution of Mg(OH)₂ according to the following equation:
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
In acidic solution, OH⁻ reacts with H⁺ to form H₂O.
OH⁻(aq) + H⁺(aq) ⇄ H₂O(l)
According to Le Chatelier's principle, since [OH⁻] decreases, the solution of Mg(OH)₂(s) shifts toward the right, increasing its solubility.
Let's consider the solution of CaCO₃ according to the following equation:
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
In acidic solution, CO₃²⁻ reacts with H⁺ to form HCO₃⁻.
CO₃²⁻(aq) + H⁺(aq) ⇄ HCO₃⁻(aq)
According to Le Chatelier's principle, since [CO₃²⁻] decreases, the solution of CaCO₃(s) shifts toward the right, increasing its solubility.
Let's consider the solution of AgCl according to the following equation:
AgCl(s) ⇄ Ag⁺(aq) + Cl⁻(aq)
Cl⁻ does not react with H⁺ because it comes from a strong acid (HCl). Therefore, the solubility of AgCl(s) is not affected by the pH.