Answer:
3675 J
Explanation:
Gravitational Potential Energy =
× mass × g × height
( g is the gravitation field strength )
Mass = 50 kg
G = 9.8 N/kg ( this is always the same )
Height = 15 m
Gravitational Potential Energy =
× 50 ×9.8 × 15
= 3675 J
Acceleration is the rate at which an object picks up speed. deceleration is the rate at which an object loses speed.
Answer:
3 seconds
Explanation:
Applying,
Applying,
v = u±gt................ Equation 1
Where v = final velocity, u = initial velocity, t = time, g = acceleration due to gravity.
From the question,
Given: v = 0 m/s ( at the maximum height), u = 30 m/s
Constant: g = -10 m/s
Substitute these values into equation 1
0 = 30-10t
10t = 30
t = 30/10
t = 3 seconds
Answer:
9155 years old
Explanation:
We use the following expression for the decay of a substance:

So we first estimate the value of k knowing that the half-life of the C14 is 5730 years:

so, now we can estimate the age of the artifact by solving for"t" in the equation:

which we can round to 9155 years old.
Answer:
Answers can be seen below
Explanation:
First we must explain the essential when we clear equations, and that is that if the term we need to clear is accompanied by other terms that are being added up, then those terms go to the other side of the equation to subtract if those terms are subtracting, then they go to the other side to add, if those terms are found multiplying then they go to the other side of the equation to divide and if those other terms are found dividing then they go to the other side of the equation to multiply.
(Primero debemos explicar lo esencial cuando despejamos ecuaciones, y es que si el término que necesitamos despejar va acompañado de otros términos que se están sumando, entonces esos términos van al otro lado de la ecuación para restar si esos términos están restando, luego van al otro lado para sumar, si esos términos se encuentran multiplicando luego van al otro lado de la ecuación a dividir, y si esos términos se encuentran dividiendo, pasan al otro lado de la ecuación a multiplicar.)
1 )
; 
2)
; 
3)
; 
4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)
; 
15)

16)
