The weight of 20 kg is
(mass) x (gravity) =
(20 x 9.8) = 196 newtons, downward.
There must be a force of 196 newtons upward on the mass.
Otherwise the mass is accelerating either up or down.
For a standing wave to form, two waves must be traveling in opposite directions and cause destructive interference.
Complete question is;
a. Two equal sized and shaped spheres are dropped from a tall building. Sphere 1 is hollow and has a mass of 1.0 kg. Sphere 2 is filled with lead and has a mass of 9.0 kg. If the terminal speed of Sphere 1 is 6.0 m/s, the terminal speed of Sphere 2 will be?
b. The cross sectional area of Sphere 2 is increased to 3 times the cross sectional area of Sphere 1. The masses remain 1.0 kg and 9.0 kg, The terminal speed (in m/s) of Sphere 2 will now be
Answer:
A) V_t = 18 m/s
B) V_t = 10.39 m/s
Explanation:
Formula for terminal speed is given by;
V_t = √(2mg/(DρA))
Where;
m is mass
g is acceleration due to gravity
D is drag coefficient
ρ is density
A is Area of object
A) Now, for sphere 1,we have;
m = 1 kg
V_t = 6 m/s
g = 9.81 m/s²
Now, making D the subject, we have;
D = 2mg/((V_t)²ρA))
D = (2 × 1 × 9.81)/(6² × ρA)
D = 0.545/(ρA)
For sphere 2, we have mass = 9 kg
Thus;
V_t = √[2 × 9 × 9.81/(0.545/(ρA) × ρA))]
V_t = 18 m/s
B) We are told that The cross sectional area of Sphere 2 is increased to 3 times the cross sectional area of Sphere 1.
Thus;
Area of sphere 2 = 3A
Thus;
V_t = √[2 × 9 × 9.81/(0.545/(ρA) × ρ × 3A))]
V_t = 10.39 m/s
Consider 20 deg.C. as room temperature.
From tables,
Silver has a resistivity of 1.6*10^-8 ohm-m at 20 deg.C, and it increases by 0.0038 ohm-m per deg.K increase.
Therefore if the temperature rise above 20 deg.C is T, then silver will have resistivity of
1.6*10^-8(1 + 0.0038T) ohm-m
At room temperature, the resistivity of tungsten (from tables) is 5.6*10^-8.
The resistivity of silver will be 4 times that of tungsten (at room temperature) when
1.6*10^-8(1 + 0.0038T) = 4*5.6*10^-8
1 + 0.0038T = 14
T = 13/.0038 = 3421 deg.K approx
Answer: 20 + 3421 = 3441 °C