Gravitational acceleration is approx 9.8 m/s
Time is 7s
a=9.8 m/s
t=7s
a = d/t^2
therefore:
d = a * t^2
d = 9.8 * 7^2
d = 9.8 * 49
d = 480.2 [m]
Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J
The voters political opinions and what they think what is right and wrong.
Answer:
1.84 kJ (kilojoules)
Explanation:
A specific heat of 0.46 J/g Cº means that it takes 0.46 Joules of energy to raise the temperature of 1 gram of iron by 1 Cº.
If we want to heat 50 g of iron from 20° C to 100° C, we can make the following calculation:
Heat = (specific heat)*(mass)*(temp change)
Heat = (0.46 J/g Cº)*(50g)*(100° C - 20° C)
[Note how the units cancel to yield just Joules]
Heat = 1840 Joules, or 1.84 kJ
[Note that the number is positive: Energy is added to the system. If we used cold iron to cool 50g of 100° C water, the temperature change would be (Final - Initial) or (20° C - 100° C). The number is -1.84 kJ: the negative means heat was removed from the system (the iron).
Answer:
Explanation:
The formula that you are working with is F = m*a
Since mass is one part of the formula if you increase the mass, you are going to increase the force.
The second one is much more difficult to answer because it is basically incomplete. This is one way to interpret it. If you start at a certain speed and increase during a known time period then effectively you are defining acceleration which is "a" in the formula.
Without those modifications, there is no answer.