Answer:
The magnitude of F₁ is 3.7 times of F₂
Explanation:
Given that,
Time = 10 sec
Speed = 3.0 km/h
Speed of second tugboat = 11 km/h
We need to calculate the speed


The force F₁is constant acceleration is also a constant.

We need to calculate the acceleration
Using formula of acceleration



Similarly,

For total force,


The speed of second tugboat is


We need to calculate total acceleration



We need to calculate the acceleration a₂



We need to calculate the factor of F₁ and F₂
Dividing force F₁ by F₂



Hence, The magnitude of F₁ is 3.7 times of F₂
Answer:
The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Explanation:
Given that,
Mass of proton 
Speed
We need to calculate the kinetic energy for non relativistic
Using formula of kinetic energy

Put the value into the formula


We need to calculate the kinetic energy for relativistic
Using formula of kinetic energy



Hence, The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Hi!
The answer is <span>B. Language influences how people understand their world.
Hope this helps!
-Payshence xoxo</span>
Answer:
Limewater can be used to detect carbon dioxide. If carbon dioxide is bubbled through limewater then it turns from clear to cloudy/milky in colour. This is why limewater used in a simple respirometer can show that more carbon dioxide is present in exhaled air compared to inhaled air.
Explanation:
The work that is required to increase the speed to 16 knots is 14,176.47 Joules
If a catamaran with a mass of 5.44×10^3 kg is moving at 12 knots, hence;
5.44×10^3 kg = 12 knots
For an increased speed to 16knots, we will have:
x = 16knots
Divide both expressions

To get the required work done, we will divide the mass by the speed of one knot to have:

Hence the work that is required to increase the speed to 16 knots is 14,176.47 Joules
Learn more here: brainly.com/question/25573786