Answer:
3.7 km/h
Explanation:
Let's call v the proper speed of the boat and v' the speed of the water in the river.
When the boat travels in the direction of the current, the speed of the boat is:
v + v'
And it covers 50 km in 3 h, so we can write
(1)
When the boat travels in the opposite direction, the speed of the boat is
v - v'
And it covers 50 km in 5.4 h, so
(2)
So we have a system of two equations: by solving them simultaneously, we find the value of v and v':

Subtracting the second equation from the first one we get:

So, the speed of the water is 3.7 km/h.
Answer:
80.6 mV
Explanation:
Parameters given:
Number of turns, N = 115
Radius of coil, r = 2.71 cm = 0.0271m
Time taken, t = 0.133s
Initial magnetic field, Bin = 50.1 mT = 0.0501 T
Final magnetic field, Bfin = 90.5 mT = 0.0905 T
Induces EMF is given as:
EMF = [(Bfin - Bin) * N * A] / t
EMF = [(0.0905 - 0.0501) * 115 * pi * 0.0271²] / 0.133
EMF = (0.0404 * 115 * 3.142 * 0.0007344) / 0.133
EMF = 0.0806 V = 80.6 mV
Answer:
499.523. meter
<em>I</em><em> hope</em><em> it's</em><em> helps</em><em> you</em>
Explanation:
(a) Displacement of an object is the shortest path covered by it.
In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag. She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.
0.4 miles = 0.64 km
displacement = 0.7-0.3+0.64 = 1.04 km
(b) Average velocity = total displacement/total time
t = 15 min = 0.25 hour

Hence, this is the required solution.
Answer:
<h2>23.33 kg </h2>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>23.33 kg</h3>
Hope this helps you