Answer:
Explanation:
The formula for kinetic energy Ke=1/2mv^2 where Ke is kinetic energy, m=mass, and v= velocity.
If the kinetic energy is increased that means that there must be an increase in mass or velocity. However, since the velocity is squared that means that velocity affects the kinetic energy of the object more than the mass does.
Answer:
as
- Mass of sun > Mass of earth
Therefore, the sun will exert more gravitational force on earth.
Explanation:
While comparing the gravitational force exerted by two objects, we need to observe which object has a greater mass.
- The object with the greater mass exerts a more gravitational force on the other object.
We know that mass of the sun is about 1.99 x 10³⁰ kg, and the earth's mass is only 6.0 x 10²⁴.
as
- Mass of sun > Mass of earth
Therefore, the sun will exert more gravitational force on earth.
Answer:
answer c. come easy dear.
Here are the steps you would need to follow:
#1). Define what 'the 'X is, and how it's related to the ball.
#2). Be clear on how 'the X' is related to the 'known velocity'.
#3). Identify how the 'known velocity' is related to the action of the ball when it's launched.
With this information in front of you, you'll have a much better chance
of answering the question.
With none of it in front of me, I have no chance at all.
Answer:
time of flight of a pulse, and these most often
involve triggering of the measuring oscilloscope
with the signal that generates the sound pulse and
timing the time delay of the pulse picked up by a
conveniently placed microphone45
. Loren Winters
has reported a method similar in principle to the
present one, but which uses a completely different
detection system6
.
Explanation: