Answer:
<h2>c. remain constant</h2>
Explanation:
Such type of field that is created by the magnetic condition is known as magnetic field. Such type of the developed by electrical condition and some other ways. This filed has many important roles in electrical engineering and some other fields.
When any magnetic field acts in perpendicular condition then no work is done by the field. Thus the kinetic energy and speed of the particle remain in constant condition.
“Weight of the wrench” on “the moon” is “6.07 kg”.
<u>Explanation</u>:
Weight of the wrench is 5.24 N
Weight of the wrench in kilograms = W × g
Taken “g” on the moon is 

Weight of the wrench in kilograms is 51.352 kg.
Formula to calculate weight of the object on the moon is

Substitute the values given,


= 6.07 kg
Therefore, weight of the wrench on the moon is 6.07 kg.
Answer:
a c d
Explanation:
because I said so and yeah nshsjsisayagavava sishywabhwvsusnsbs
<h2>
Answer:</h2>
<em>1.33 x 10⁻ ⁴ T outwards.</em>
<em></em>
<h2>
Explanation:</h2>
The equation for the magnetic force (F) on a wire whose length is L and carrying a current I in a magnetic field (B) that is uniform is given by;
F = ILB sin θ ---------------------(i)
Where;
θ = angle between the direction of the current and that of the magnetic field.
From the question,
F = 4.0 × 10⁻² N
I = 12A
L = 25m
θ = 90°
<em>Substitute these values into equation(i) and solve as follows;</em>
4.0 × 10⁻² = 12 x 25 x B x sin 90°
4.0 × 10⁻² = 300 x B x 1
4.0 × 10⁻² = 300B
0.04 = 300B
B = 
B = 0.000133
B = 1.33 x 10⁻ ⁴ T
To get the direction of the magnetic field, the right-hand rule is used.
If the right hand fingers are positioned in the correct order specified by the right hand rule, then it would be seen that the magnetic field is directed outwards.
Therefore, the magnitude and direction of the magnetic field at this location is <em>1.33 x 10⁻ ⁴ T outwards.</em>
Answer:
A.) 4 revolution
B.) 0.2 revolution
C.) 4 seconds
D.) 2.75 m/s
Explanation:
Given that a merry-go-round a.k.a "the spinny thing" is rotating at 15 RPM, and has a radius of 1.75 m
Solution
1 revolution = 2πr
Where r = 1.75m
A. How many revolutions will it make in 3 minutes?
(2π × 1.75) / 3
10.9955 / 3
3.665 RPM
Number of revolution = 15 / 3.665
Number of revolution = 4 revolution
B. How many revolutions will it make in 10.0 seconds?
First convert 10 seconds to minutes
10/60 = 0.167 minute
(2π × 1.75) / 0.167
10.9955 / 0.167
65.973
Number of revolution = 15 / 65.973
Number of revolution = 0.2 revolution
C. How long does it take for a person to make 1 complete revolution?
15 = 1 / t
Make t the subject of formula
t = 1/15
t = 0.0667 minute
t = 4 seconds
D. What is the velocity in m/s of person standing on its edge?
Velocity in m/ s will be:
Velocity = (15 × 2pi × r) / 60
Velocity = 164.9334 / 60
Velocity = 2.75 m/s