Density = mass / volume
D = 89 / 10.0
D = 8.9 g/cm³
hope this helps!
Answer:
C
Explanation:
For the explained scenario in the free body force diagram definitely the two forces 1200 N and 800 N should present as they are the acting forces
So A & D rules out.
Then you must think of B & C.
You also know that the weight of the load is always acting downwards as that force is generated by gravitational field of Earth. So 800 N should be downwards not upwards. That rules out B.
So answer is C
(Free body diagram is shown in the graph)
The axial field is the integration of the field from each element of charge around the ring. Because of symmetry, the field is only in the direction of the axis. The field from an element ds in the ring is
<span>dE = (qs*ds)cos(T)/(4*pi*e0)*(x^2 + R^2) </span>
<span>where x is the distance along the axis from the plane of the ring, R is the radius of the ring, qs is the linear charge density, T is the angle of the field from the x-axis. </span>
<span>However, cos(T) = x/sqrt(x^2 + R^2) </span>
<span>so the equation becomes </span>
<span>dE = (qs*ds)*[x/sqrt(x^2 + R^2)]/(4*pi*e0)*(x^2 + R^2) </span>
<span>dE =[qs*ds/(4*pi*e0)]*x/(x^2 + R^2)^1.5 </span>
<span>Integrating around the ring you get </span>
<span>E = (2*pi*R/4*pi*e0)*x/(x^2 + R^2)^1.5 </span>
<span>E = (R/2*e0)*x*(x^2 + R^2)^-1.5 </span>
<span>we differentiate wrt x, the term R/2*e0 is a constant K, and the derivative is </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 +x*[(-1.5)*(x^2 + R^2)^-2.5]*2x} </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5} </span>
<span>to find the maxima set this = 0, giving </span>
<span>(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5 = 0 </span>
<span>mult both side by (x^2 + R^2)^2.5 to get </span>
<span>(x^2 + R^2) - 3*x^2 = 0 </span>
<span>-2*x^2 + R^2 = 0 </span>
<span>-2*x^2 = -R^2 </span>
<span>x = (+/-)R/sqrt(2) </span>
Answer: average speed
The overall rate of speed at which an object moves: calculated by dividing the total distance an object travels by the total time
instantaneous speed > The speed of an object at one instant in time.
velocity > Speed in a given direction
“Yes, it is impossible to go around the curved path with zero acceleration. Acceleration is change in velocity. And velocity( speed+ direction) changes at every point in a curved path because there is change in direction at every point.”