1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
3 years ago
11

What is the power of a parallel circuit with a resistance of 1,000 omh and current of 0.03a

Engineering
1 answer:
Sergeeva-Olga [200]3 years ago
4 0

Answer: P = I2R = 0.032 x 1000 =0.9 W

Explanation: The power will be the product of the square of the current and

the resistance of the load. The fact that the circuit is a parallel  circuit is irrelevant to this question.

You might be interested in
On a cold winter day, wind at 55 km/hr is blowing parallel to a 4-m high and 10-m long wall of a house. If the air outside is at
koban [17]

Answer:

16.21 kW

Explanation:

Solution

Given that,

The velocity of wind = 55 km/hr

The length of the wall L = 10m

The height of the wall w = 4m

The surface temperature at wall Ts = 12° C

Temperature of air T∞ = 5°C

Now,

The properties  of the air at atm and average film temperature =( 12 + 5)/2 = 8.5°C, which is taken from the air table properties.

k= 0.02428 W/m°C

v= 1.413 *10 ^⁻5

Pr =0.7340

Now,

Recall Reynolds number when air flow parallel to 10 m side

[ 55 * 1000/3600) m/s (10 m)/1.413 *10^⁻5 m²/s

Rel =1.081 * 10⁷

This value is greater than Reynolds number.

The nusselt number is computed as follows:

Nu =hL/k

(0.037Rel^0.08 - 871)Pr^1/3

Nu =1.336 * 10 ^4

The heat transfer coefficient is

h = k/L Nu

= 0.2428 W/m°C /10 m (1.336 * 10 ^4)

h = 32.43 W/m°C

The heat transfer area of surface,

As = 40 m²

= ( 4 m) (10 m)

As = 40 m²

The rate of heat transfer is determined as follows:

Q = hAs( Ts - T∞)

= (32.43 W/m²°C) (40 m) (12 - 5)°C

=9081 W

Q = 9.08 kW

When the velocity is doubled,

let say V = 110km/hr

The Reynolds number is

Rel = VL/v

= [110 * 100/3600) m/s] (10 m)/ 1.413 *10^⁻5 m²/s

Rel = 2.163 * 10 ^7

This value is greater for critical Reynolds number

The nusselt number is computed as follows:

Nu =hL/k

(0.037Rel^0.08 - 871)Pr^1/3

[0.037 ( 2.163 * 10 ^7)^0.08 - 871] (0.7340)^1/3

Nu =2.344 * 10^4

The heat transfer coefficient is

h = k/L Nu

= 0.2428 W/m°C /10 m (2.384 * 10 ^4)

h= 57.88 W/m²°C

The heat transfer area of surface,

As =  wL

= ( 10 m) (4 m)

As = 40 m²

he rate of heat transfer is determined as follows:

Q = hAs( Ts - T∞)

= (57.88 W/m²°C) (40 m²) (12 - 5)°C

= 16,207 W

= 16.21 kW

3 0
3 years ago
Fixed rate mortgage offer:
jarptica [38.1K]

Answer: The answer is :

      C) $887

Explanation:

5 0
3 years ago
An inductor (L = 400 mH), a capacitor (C = 4.43 µF), and a resistor (R = 500 Ω) are connected in series. A 44.0-Hz AC generator
MakcuM [25]

Answer:

(A) Maximum voltage will be equal to 333.194 volt

(B) Current will be leading by an angle 54.70

Explanation:

We have given maximum current in the circuit i_m=385mA=385\times 10^{-3}A=0.385A

Inductance of the inductor L=400mH=400\times 10^{-3}h=0.4H

Capacitance C=4.43\mu F=4.43\times 10^{-3}F

Frequency is given f = 44 Hz

Resistance R = 500 ohm

Inductive reactance will be x_l=\omega L=2\times 3.14\times 44\times 0.4=110.528ohm

Capacitive reactance will be equal to X_C=\frac{1}{\omega C}=\frac{1}{2\times 3.14\times 44\times 4.43\times 10^{-6}}=816.82ohm

Impedance of the circuit will be Z=\sqrt{R^2+(X_C-X_L)^2}=\sqrt{500^2+(816.92-110.52)^2}=865.44ohm

So maximum voltage will be \Delta V_{max}=0.385\times 865.44=333.194volt

(B) Phase difference will be given as \Phi =tan^{-1}\frac{X_C-X_L}{R}=\frac{816.92-110.52}{500}=54.70

So current will be leading by an angle 54.70

5 0
3 years ago
An ideal gas undergoes two processes: one frictionless and the other not. In both the cases, the gas is initially at 200 ℉ and 1
Zarrin [17]

Answer:

The process which has friction

Explanation:

The entropy is simply the change in the state of the things or the molecules in the system. It is simply the change in the energy of the system with a focus on the atoms in the system. This is also known as the internal energy of the system and is given the symbol, G. The friction contributes to the change in the energy of the system. This is because friction generates another form of energy - that is heat energy. This energy causes the internal temperature id the system to increase. Hence the greater change in the temperature.

6 0
3 years ago
Read 2 more answers
What does an aeronautical engineer design
Colt1911 [192]

Answer:

they work with aircraft, designing aircrafts.

Explanation:

3 0
3 years ago
Other questions:
  • In a study comparing banks in Germany and Great Britain, a sample of 145 matched pairs of banks was formed. Each pair contained
    12·1 answer
  • The enthalpy of the water entering an actual pump is 500 kJ/kg and the enthalpy of the water leaving it is 550 kJ/kg. The pump h
    10·1 answer
  • A three-phase, 480 Volt, 120 horsepower, 50 Hertz four-pole induction motor delivers rated output power at a slip of 4%. Determi
    12·2 answers
  • The pressure in an automobile tire depends on thetemperature of the air in the tire. When the air temperature is25°C, the pressu
    11·1 answer
  • 1000 lb boulder B is resting on a 500 lb platform A when truck C accidentally accelerates to the right (truck in reverse). Which
    15·1 answer
  • How long does it take to get a master's degree in Mechanical engineering?
    12·1 answer
  • 2. Ang sangay na nagbibigay-kahulugan sa mga batas ng bansane
    8·1 answer
  • An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 30 . It has been determ
    5·1 answer
  • Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of t
    14·1 answer
  • Who has the authority to declare a "global emergency"?​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!