Answer: 78.89%
Explanation:
Given : Sample size : n= 1200
Sample mean : 
Standard deviation : 
We assume that it follows Gaussian distribution (Normal distribution).
Let x be a random variable that represents the shaft diameter.
Using formula,
, the z-value corresponds to 2.39 will be :-

z-value corresponds to 2.60 will be :-

Using the standard normal table for z, we have
P-value = 

Hence, the percentage of the diameter of the total shipment of shafts will fall between 2.39 inch and 2.60 inch = 78.89%
both b and c are the right
Answer:
Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation
Answer:

Explanation:
Let assume that heating and boiling process occurs under an athmospheric pressure of 101.325 kPa. The heat needed to boil water is:
![Q_{water} = (1.4\,L)\cdot(\frac{1\,m^{3}}{1000\,L} )\cdot (1000\,\frac{kg}{m^{3}} )\cdot [(4.187\,\frac{kJ}{kg\cdot ^{\textdegree}C} )\cdot (100^{\textdegree}C-25^{\textdegree}C)+2257\,\frac{kJ}{kg}]](https://tex.z-dn.net/?f=Q_%7Bwater%7D%20%3D%20%281.4%5C%2CL%29%5Ccdot%28%5Cfrac%7B1%5C%2Cm%5E%7B3%7D%7D%7B1000%5C%2CL%7D%20%29%5Ccdot%20%281000%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%20%29%5Ccdot%20%5B%284.187%5C%2C%5Cfrac%7BkJ%7D%7Bkg%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D%20%29%5Ccdot%20%28100%5E%7B%5Ctextdegree%7DC-25%5E%7B%5Ctextdegree%7DC%29%2B2257%5C%2C%5Cfrac%7BkJ%7D%7Bkg%7D%5D)

The heat liberated by the LP gas is:


A kilogram of LP gas has a minimum combustion power of
. Then, the required mass is:


Answer:
See explaination and attachment.
Explanation:
Navier-Stokes equation is to momentum what the continuity equation is to conservation of mass. It simply enforces F=ma in an Eulerian frame.
The starting point of the Navier-Stokes equations is the equilibrium equation.
The first key step is to partition the stress in the equations into hydrostatic (pressure) and deviatoric constituents.
The second step is to relate the deviatoric stress to viscosity in the fluid.
The final step is to impose any special cases of interest, usually incompressibility.
Please kindly check attachment for step by step solution.