A "heating curve" is a graph that shows the temperature of the substance
against the amount of heat you put into it.
For most of the graph, as you'd expect, the temperature goes up as you
add heat, and it goes down as you take heat away. BUT ... While the
substance is changing state, its temperature doesn't change even though
you're putting heat in or taking heat out.
So that part of the graph is a horizontal line.
<span>Density is a value for
mass, such as kg, divided by a value for volume, such as m3. Density is a
physical property of a substance that represents the mass of that substance per
unit volume. It is a property that can be used to describe a substance. We calculate as follows:
</span><span>Volume = 60.0 g ( 1 mL / 0.70 g ) = 85.71 mL
Therefore, the correct answer is option B.</span>
Answer:
0.426 L
Explanation:
Boyles law is expressed as p1v1=p2v2 where
P1 is first pressure, v1 is first volume
P2 is second pressure, v2 is second volume.
Given information
P1=96 kPa, v1=0.45 l
P2=101.3 kpa
Unknown is v2
Making v2 the subject from Boyle's law

Substituting the given values then

Therefore, the volume is approximately 0.426 L
Answer:
2.16×10⁻⁶ N
Explanation:
Applying,
F = kqq'/r² (coulomb's Law)....................... Equation 1
Where F = electrostatic force, k = coulomb's constant, q = charge on the styrofoam, q' = charge on the grain of salt, r = distance between the charges.
From the question,
Given: q = 0.002 mC = 2.0×10⁻⁶ C, q' = 0.03 nC = 3.0×10⁻¹¹ C, r = 0.5 m
Constant: k = 8.99×10⁹ Nm²/C²
Substitute these values into equation 1
F = (2.0×10⁻⁶)(3.0×10⁻¹¹)(8.99×10⁹)/0.5²
F = 2.16×10⁻⁶ N
Decreases
Explanation:
The force of attraction between two objects will decrease as the distance between them increases.
This is in compliance with newtons law of universal gravitation.
The force of attraction between the two bodies is a gravitational force.
According to newton's law of universal gravitation "the force of attraction between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
We see that from the last statement, the force of attraction between is inversely proportional to the square of the distances between them.
F ∞ 
r is the distance between them.
learn more:
Universal gravitation brainly.com/question/1724648
#learnwithBrainly