Explanation:
i) center of gravity (or mass)
ii) m = W/g = (160 N)/(9.8 m/s^2)
= 16.3 kg
Answer:
electrons
Explanation:
An electric current is said to exist when there is a net flow of electric charge through a region. In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).
Answer:
The distance between the two spheres is 914.41 X 10³ m
Explanation:
Given;
4 X 10¹³ electrons, and its equivalent in coulomb's is calculated as follows;
1 e = 1.602 X 10⁻¹⁹ C
4 X 10¹³ e = 4 X 10¹³ X 1.602 X 10⁻¹⁹ C = 6.408 X 10⁻⁶ C
V = Ed
where;
V is the electrical potential energy between two spheres, J
E is the electric field potential between the two spheres N/C
d is the distance between two charged bodies, m

where;
K is coulomb's constant = 8.99 X 10⁹ Nm²/C²
d = (8.99 X 10⁹ X 6.408 X 10⁻⁶)/0.063
d = 914.41 X 10³ m
Therefore, the distance between the two spheres is 914.41 X 10³ m
Answer:
Maybe put them in order ????
Explanation:
Answer:
1.3 x 10^(-2) atm/s
Explanation:
It follows the stoichiometry. For every mole of O3 that disappears, 1.5 moles (that is, 3/2) of O2 appears:
1.5 * 0.009 atm/s = 0.0135 atm/sec; the answer is 1.3 x 10^(-2) atm/s