Answer:
okay
Explanation:
(wish i could help but im just answering for points)
Answer:
Centripetal acceleration,

Explanation:
Centripetal acceleration:
Centripetal acceleration is the idea that any object moving in a circle, in something called circular motion, will have an acceleration vector pointed towards the center of that circle.
Centripetal means towards the center.
Examples of centripetal acceleration (acceleration pointing towards the center of rotation) include such situations as cars moving on the cicular part of the road.
An acceleration is a change in velocity.
Formula for Centripetal acceleration:

Given here,
Velocity = 4.5 m/s
radius = 7.7 m
To Find :

Solution:
We have,

Substituting given value in it we get

Centripetal acceleration,

Answer:
(a) 70cm³
(b) 805 grams
Explanation:
(a) V = L×B×H
= 7cm×5cm×2cm
= 35cm×2cm
= 70cm³
(b) Mass = Volume × Density
= 70cm³ × 11.5g/cm³
= 805 grams
[:] Answer [:]
D) Temperature
You measure temperature with a thermometer. You can use it to measure you r temperature if you're sick, or you use it to measure the temperature outside. A, B, and C do not work with a thermometer. You would use a different device for those.
-Brainly Answerer
Lifting a mass to a height, you give it gravitational potential energy of
(mass) x (gravity) x (height) joules.
To give it that much energy, that's how much work you do on it.
If 2,000 kg gets lifted to 1.25 meters off the ground, its potential energy is
(2,000) x (9.8) x (1.25) = 24,500 joules.
If you do it in 1 hour (3,600 seconds), then the average power is
(24,500 joules) / (3,600 seconds) = 6.8 watts.
None of these figures depends on whether the load gets lifted all at once,
or one shovel at a time, or one flake at a time.
But this certainly is NOT all the work you do. When you get a shovelful
of snow 1.25 meters off the ground, you don't drop it and walk away, and
it doesn't just float there. You typically toss it, away from where it was laying
and over onto a pile in a place where you don't care if there's a pile of snow
there. In order to toss it, you give it some kinetic energy, so that it'll continue
to sail over to the pile when it leaves the shovel. All of that kinetic energy
must also come from work that you do ... nobody else is going to take it
from you and toss it onto the pile.