<span>If the temperature increases in a sample of gas at constant volume, then its pressure increases. The increase in temperature makes the molecule hit the walls of the container faster. The correct option among all the options that are given in the question is the third option or option "c". I hope the answer helps you.</span>
Answer:
Assuming there is no heat loss to the surrounding.
Heat lost by iron equals heat gained by water.
0.2(450)(50-x)=0.2(4200)(x-30)
x=31.94 °C
Explanation:
Answer: <span>D. A bimetallic strip bends so that the steel is on the outside curve
</span>
When something has an increased temperature, its volume will expand. Then, if the temperature drops, its volume should be smaller. From there option A and B are out since the liquid in thermometer is expand or move up.
When you put two kinds of different metal with a different coefficient of thermal expansion, the outer curve metal will be the one with lesser coefficient when temperature drop. Since the question about drop in temperature then the metal should be bend
Brass will expand 1.5 times more than the steel so the outer curve would be the steel.
Answer:
a)
b)
Explanation:
a)
The width of the central bright in this diffraction pattern is given by:
when m is a natural number.
here:
- m is 1 (to find the central bright fringe)
- D is the distance from the slit to the screen
- a is the slit wide
- λ is the wavelength
So we have:
b)
Now, if we do m=2 we can find the distance to the second minima.

Now we need to subtract these distance, to get the width of the first bright fringe :
I hope it heps you!