Answer:

Explanation:
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
The gravitational force is always attractive.
In this problem, we have:
is the mass of the Earth
is the mass of the Moon
is the separation between the Earth and the Moon
Therefore, the gravitational force between them is

Answer:
Time, t = 0.23 seconds
Explanation:
It is given that,
Initial speed of the ranger, u = 52 km/h = 14.44 m/s
Final speed of the ranger, v = 0 (as brakes are applied)
Acceleration of the ranger, 
Distance between deer and the vehicle, d = 87 m
Let d' is the distance covered by the deer so that it comes top rest. So,


d' = 26.06 m
Distance between the point where the deer stops and the vehicle is :
D=d-d'
D=87 - 26.06 = 60.94 m
Let t is the maximum reaction time allowed if the ranger is to avoid hitting the deer. It can be calculated as :


t = 0.23 seconds
Hence, this is the required solution.
Explanation:
It is given that,
Mass of an electron, 
Initial speed of the electron, 
Final speed of the electron, 
Distance, d = 5 cm = 0.05 m
(a) The acceleration of the electron is calculated using the third equation of motion as :



Force exerted on the electron is given by :



(b) Let W is the weight of the electron. It can be calculated as :



Comparison,


Hence, this is the required solution.
The answer is Carbonic acid
Answer:
120,000
Explanation:
Millimeters to meters calculation-
Multiply by 1,000.
120 x 1,000 = 120,000.
This is the correct answer and formula.
Hope this helps!