A solution with a pH of 6.52 has a hydronium ion concentration of 3.02x10-7 mol/L and a hydroxide ion concentration of 3.31x10-8 mol/L.
The hydronium ion concentration of a solution can be calculated from pH by using
. For a pH of 6.52, hydronium ion concentration is 3.02x10-7 mol/L.
The concentration of hydroxide ions can be determined by identifying the value of pOH. The sum of pOH and pH is equal to 14, which is based on the negative logarithm of the ion-product constant of water. At a pH of 6.52, pOH is equal to 7.48.
The relationship between pOH and hydroxide ion concentration is the same as the relationship between pH and hydronium ion concentration. With this, the hydroxide ion concentration at pOH of 7.48 is
or 3.31x10-8 mol/L.
For more information regarding pH and pOH, please refer to the link brainly.com/question/13557815.
#SPJ4
Answer:
Density, 
Explanation:
The attached figure shows a 38.6 kg marble slab. The dimensions of the marble slab is 23 cm × 17 cm × 4 cm
Density = mass/volume
Volume of a cuboid shape is equal to, V = 23 cm × 17 cm × 4 cm
V = 1564 cm³
Density,

or

So, the density of the marble slab is
.
The balanced equation:
Mg+2HCl⇒ MgCl₂+H₂
Answer:
C) 712 KJ/mol
Explanation:
- ΔH°r = Σ Eb broken - Σ Eb formed
- 1/2Br2(g) + 3/2F2(g) → BrF3(g)
∴ ΔH°r = - 384 KJ/mol
∴ Br2 Eb = 193 KJ/mol
∴ F2 Eb = 154 KJ/mol
⇒ Σ Eb broken = (1/2)(Br-Br) + (3/2)(F-F)
⇒ Σ Eb broken = (1/2)(193 KJ/mol) + (3/2)(154 KJ/mol) = 327.5 KJ/mol
∴ Eb formed: Br-F
⇒ Σ Eb formed (Br-F) = Σ Eb broken - ΔH°r
⇒ Eb (Br-F) = 327.5 KJ/mol - ( - 384 KJ/mol )
⇒ Eb Br-F = 327.5 KJ/mol + 384 KJ/mol = 711.5 KJ/mol ≅ 712 KJ/mol