Answer:
to the left
Explanation:
<u>If the concentration of products is increased for a reaction that is in equilibrium, the equilibrium would shift to the left side of the reaction (the reactant's side). </u>
For a reaction that is in equilibrium, the reaction is balanced between the reactants and the products. According to Le Cha telier's principle, if one of the constraints capable of influencing the rate of reactions is applied to such a reaction that is in equilibrium, the equilibrium would shift so as to neutralize the effects created by the constraint.
<em>Hence, in this case, if the concentration of the products of a reaction in equilibrium is increased, the equilibrium would shift in such a way that more reactants are formed so as to annul the effects created by the increase in the concentration of the products. Since reactants are always on the left side of chemical equations, it thus means that the equilibrium would shift to the left.</em>
<span>You must balance your equation correctly.
Here is your answer:
294gFeS2 x 1molFeS2/119.99 x 11mols O2/4mols FeS2--> 6.738mol O2
176gO2 x 1mol O2/32gO2 x 4mols FeS2/11mol FeS2--> 2mols FeS2
Now choose the molecule with the lowest amount (Limiting Reagent)
2molsFeS2 x 2molsFe2O3/4molsFeS2 x 159.7g
159.7g Fe2O3 grams produced.</span>
The choices can be found elsewhere and as follows:
<span>A.The enzyme pectinase speeds up the breakdown of pectin in fruits, producing more juice.. .
B.The enzyme pectinase enhances the taste of fruit juices, making them more popular.. .
C.The enzyme pectinase speeds up the breakdown of toxins in fruits, producing more juice.
The correct answer would be A. </span>The enzyme pectinase speeds up the breakdown of pectin in fruits, producing more juice. With this, the manufacturer company will get more volume of product from same amount of resource.
They do not show the same season. one is faced a different part of the sun
Balanced equation : C. CH₄ + 4Cl₂⇒ CCl₄+ 4HCl
<h3>Further explanation </h3>
Equalization of chemical reactions can be done using variables. Steps in equalizing the reaction equation:
1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c, etc.
2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index (subscript) between reactant and product
3. Select the coefficient of the substance with the most complex chemical formula equal to 1
Reaction
CH₄ + Cl₂⇒ CCl₄+ HCl
aCH₄ + bCl₂⇒ CCl₄+ cHCl
C, left=a, right=1⇒a=1
H, left=4a, right=c⇒4a=c⇒4.1=c⇒c=4
Cl, left=2b, right=4+c⇒2b=4+c⇒2b=4+4⇒2b=8⇒b=4
The equation becomes :
CH₄ + 4Cl₂⇒ CCl₄+ 4HCl