Energy that transfers through the medium
Answer:
The wavelengths of C1 is 10.4m, A6 is 0.193m and B7 is 0.0861m
Explanation:
Using the formula V = f×λ . Then substitute the following values into the formula:
a) v=340m/s
f=32.7 Hz
λ=V ÷ f
= 340 ÷ 32.7
= 10.4m (3s.f)
b) λ=340 ÷ 1760
= 0.193m (3s.f)
c) λ=340÷3951.1
= 0.0861m (3s.f)
(Correct me if I am wrong)
Answer:
Vaporation
Explanation:
In the vaporization or boiling, the passage of particles from the liquid state to the gaseous state occurs completely
Answer:
Explanation:
The velocity of a wave in a string is equal to:
v = √(T / (m/L))
where T is the tension and m/L is the mass per length.
To find the mass per length, we need to find the cross-sectional area of the thread.
A = πr² = π/4 d²
A = π (3.0×10⁻⁶ m)²
A = 2.83×10⁻¹¹ m²
So the mass per length is:
m/L = ρA
m/L = (1300 kg/m³) (2.83×10⁻¹¹ m²)
m/L = 3.68×10⁻⁸ kg/m
So the wave velocity is:
v = √(T / (m/L))
v = √(7.0×10⁻³ N / (3.68×10⁻⁸ kg/m))
v ≈ 440 m/s
The speed of sound in air at sea level is around 340 m/s. So the spider will feel the vibration in the thread before it hears the sound.