The choices are:
a. Normal Force
b. Gravity Force
c. Applied Force
d. Friction Force
e. Tension Force
f. Air Resistance Force
Answer:
The answer is letter e, Tension Force.
Explanation:
Force refers to the "push" and "pull" of an object, provided that the object has mass. This results to acceleration or a change in velocity. There are many types of forces such as <em>Normal Force, Gravity Force, Applied Force, Friction Force, Tension Force and Air Resistance Force.</em>
The situation above is an example of a "tension force." This is considered the force that is being applied to an object by strings or ropes. This is a type force that allows the body to be pulled and not pushed, since ropes are not capable of it. In the situation above, the tension force of the rope is acting on the bag and this allows the bag to be pulled.
Thus, this explains the answer.
Answer:
Outer Shell
Explanation:
an electron of an atom, located in the outermost shell (valence shell) of the atom, that can be transferred to or shared with another atom. An electron in one of the outer shells of an atom that can participate in forming chemical bonds with other atoms. read more
Answer:
The acceleration of the earth is 7.05 * 10^-25 m/s²
Explanation:
<u>Step 1:</u> Data given
mass of the apple = 0.43 kg
acceleration = 9.8 m/s²
mass of earth = 5.98 * 10 ^24 kg
<u>Step 2:</u> Calculate the acceleration of the earth
Following the third law of Newton F = m*a
F(apple) = F(earth) = m(apple)*a(apple)
F(apple) = 0.43 kg * 9.8 m/s² = 4.214 N
a(earth) = F(apple/earth)/m(earth)
a(earth) = 4.214N /5.98 * 10 ^24 kg
a(earth) = 7.05 * 10^-25 m/s²
The acceleration of the earth is 7.05 * 10^-25 m/s²
Answer:
D. the same as force. the applied force per cross-sectional area.
Explanation:
Tensile stress of a material is defined as the ratio of the applied force on the material to its cross sectional area. this is expressed mathematically as;
Tensile stress = Force/cross sectional area
Tensile stress = F/A
Force is measured in newton while cross sectional area is measured in m
Hence the unit of Tensile stress is N/m²
Answer:
λ = 8.716 mm
Explanation:
Given:
- d = 10 cm
- Q >= 5 degrees
Find:
- Find the shortest wavelength of light for which this apparatus is useful
Solution:
- The formula that relates the split difference and angle of separation between successive fringes is given by:
d*sin(Q) = n*λ
Where,
λ: wavelength
d: split separation
Q: angle of separation between successive fringes
m: order number.
- Since this apparatus only shows the first order light so m =1
- the shortest possible wavelength corresponds to:
d*sin(Q) = λ
λ = 0.1*sin(5)
λ = 8.716 mm