Answer:
0.22 mol HClO, 0.11mol HBr.
0.25mol NH₄Cl, 0.12 mol HCl
Explanation:
A buffer is defined as a mixture in solution between weak acid and its conjugate base or vice versa.
Potassium hypochlorite (KClO) could be seen as conjugate base of HClO (Weak acid). That means the addition of <em>0.22 mol HClO </em>will convert the solution in a buffer. HBr reacts with KClO producing HClO, thus, <em>0.11mol HBr</em> will, also, convert the solution in a buffer. 0.23 mol HBr will react completely with KClO and in the solution you will have only HClO, no a buffering system.
Ammonia (NH₃) is a weak base and its conjugate base is NH₄⁺. That means the addition of <em>0.25mol NH₄Cl</em> will convert the solution in a buffer. Also, NH₃ reacts with HCl producing NH₄⁺. Thus, addition of<em> 0.12 mol HCl</em> will produce NH₄⁺. 0.25mol HCl consume all NH₃.
Correct Answer: option C: Formation of sea ice
Reason:
<span> In cold regions, changes in salinity alters the water present in ocean. Further, water density also changes with temperature. In general, water density in ocean water increases with decreasing temperature. This is because, when salt is ejected into the ocean as sea ice forms, the water's salinity increases. Since, salt water is heavier, the density of the water increases.</span>
Answer:


Explanation:
Hello,
Considering the given reaction's stoichiometry, grams of oxygen result:

Moreover, the mass of produced carbon dioxide turns out:

Best regards.
Answer:
Disability Rights
Explanation:
Because they're asking her to provide a interpreter while she speaks on television for the deaf .