Answer : Methanal also known as Formaldehyde
is a chemical Aldehyde which contain ( -CHO) group.
Explanation :
In organic chemistry, a carbonyl group is a functional group which contain a carbon atom double-bonded to an oxygen atom i.e, ( C=O).
If carbonyl group is present in a compound then it can be a carboxylic (RCOOH), aldehyde (RCHO), ketone (RCOR'), ester ((RCOOR') or amide (RCONR'R") group.
Here are some functional groups naming according to the<em> IUPAC</em> rules and image also attached,
Carboxylic acid → (RCOOH) → ( name end in 'OIC ACID' )
Aldehyde → (RCOH) → ( name end in 'AL' )
Ketone → (RCOR') → ( name end in 'ONE' )
Ester → (RCOOR') → ( name end in 'ATE' )
Amide → (RCONR'R") → ( name end in 'AMIDE' )
In an aldehyde, atleast one hydrogen atom must be attached to the carbonyl carbon. For an aldehyde, remove ( -e) from alkane name and add ( -al) at the end of the compound.
Methanal is the IUPAC name for Formaldehyde.
In general chemistry, isotopes are a group of substances that belong to the same element. An element is characterized in the periodic table by their atomic number, which is the number of protons in an atom. Therefore, these substances have the same atomic numbers, but differ in mass numbers. Mass number is the sum of the number of protons and neutrons in the nucleus of an atom.
To determine the atomic weight of an element, you take the average weight of all the existent isotopes of that said element. The calculation would require to multiply the exact mass of the isotope to its abundance. Then, sum them all up.
Atomic weight = 98(0.18) + 112(0.82)
Atomic weight = 109.48 amu
Answer:

Explanation:
Hello there!
In this case, it is possible to comprehend these mass-particles problems by means of the concept of mole, molar mass and the Avogadro's number because one mole of any substance has 6.022x10²³ particles and have a mass equal to the molar mass.
In such a way, for C₆H₁₂O₆, whose molar mass is about 180.16 g/mol, the referred mass would be:

Best regards!
Answer:
C) carbon dioxide and hydrigen