Answer:
4 m, 1.71 m and 6.29 m
Explanation:
Let L = 8 m be the distance between the two speakers. Let x be the distance from speaker A of constructive interference. The distance to speaker B from the point of constructive interference is thus x₁ = L - x.
There is constructive interference when the distance x₁ - x = nλ where n = is an integer and λ = wavelength L - x
x₁ - x = nλ
L - x - x = nλ
L - 2x = nλ
x = (L - nλ)/2 = (L - nv/f)/2. where v = speed of wave = 343 m/s and f = frequency = 75 Hz
The distance from A where constructive interference would occur starts from when
n = 0
x₂ = (L - nv/f)/2 = (8 - 0 × 343/75)/2 = (8 - 0)/2 = 8/2 = 4 m
n = 1
x₃ = (L - nv/f)/2 = (8 - 1 × 343/75)/2 = (8 - 4.57)/2 = 3.43/2 = 1.71 m
when n = 2
x₄ = (L - nv/f)/2 = (8 - 2 × 343/75)/2 = (8 - 9.14)/2 = -1.15/2 = -0.57 m
So the value at n = 2 is not included.
The third point occurs at x₅ = L - x₃ where x₃ = 1.71 m is the distance away from point B where constructive interference also occurs. (since it is symmetrical about the point x₂ = 4 m
x₅ = L - x₃ = 8 - 1.71 = 6.29 m
Answer:
29.16 J
Explanation:
From Hook's law,
W = 1/2(ke²)..................... Equation 1
Where W = work done, k = Spring constant, e = extension.
Given: W = 9 J, e = 0.5 m.
Substitute into equation 1
9 = 1/2(k×0.5²)
Solve for k
k = 18/0.5²
k = 72 N/m.
The work done required to stretch the spring by additional 0.4 m is
W = 1/2(72)(0.4+0.5)²
W = 36(0.9²)
W = 29.16 J.
Answer:
The speed it reaches the bottom is

Explanation:
Given:
, 
Using the conservation of energy theorem


, 
![m*g*h=\frac{1}{2}*m*(r*w)^2 +\frac{1}{2}*[\frac{1}{2} *m*r^2]*w^2](https://tex.z-dn.net/?f=m%2Ag%2Ah%3D%5Cfrac%7B1%7D%7B2%7D%2Am%2A%28r%2Aw%29%5E2%20%2B%5Cfrac%7B1%7D%7B2%7D%2A%5B%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Ar%5E2%5D%2Aw%5E2)


Solve to w'





Answer:
The image distance is 17.56 cm
Explanation:
We have,
Height of light bulb is 3 cm.
The light bulb is placed at a distance of 50 cm. It means object distance is, u =-50 cm
Focal length of the lens, f = +13 cm
Let v is distance between image and the lens. Using lens formula :

So, the image distance is 17.56 cm.
<span>the statement that is true regarding flexibility is : b. a joint's range of motion will be lost if the joint is not used regularly.
Our body is like a machine. If we not constantly heat it up, our body will be more prone to injury. We can see that the old people who lived within the tribe in the middle of the mountain are far stronger than the one who lived in the city.</span>