Answer:
at point F
Explanation:
To know the point in which the pendulum has the greatest potential energy you can assume that the zero reference of the gravitational energy (it is mandatory to define it) is at the bottom of the pendulum.
Then, when the pendulum reaches it maximum height in its motion the gravitational potential energy is
U = mgh
m: mass of the pendulum
g: gravitational constant
The greatest value is obtained when the pendulum reaches y=h
Furthermore, at this point the pendulum stops to come back in ts motion and then the speed is zero, and so, the kinetic energy (K=1/mv^2=0).
A) answer, at point F
Answer:
The time taken will be 0.553 seconds.
Explanation:
We should start off by finding the force exerted by the rope on the 3kg weight in this case.
Weight of 5kg mass = 5 * 9.81 = 49.05 N
Weight of 3kg mass = 3 * 9.81 = 29.43 N
The force acting upward on the 3kg mass will equal the weight of the 5kg mass. Thus the resultant force acting on the 3kg mass is:
Total force = 49.05 - 29.43 = 19.62 N (upwards)
We can now find the acceleration:
F = m * a
19.62 = 3 * a
a = 6.54 m/s^2
We now use the following equation of motion to get the time taken to travel 1 meter:


t = 0.553 seconds
Answer:
so 9/3=3 current is 3 amperes
Explanation:
The membership rose among the baptist and methodists.