Answer:
When the electrons jump to a higher energy state, they release energy as electromagnetic radiation, light.
Explanation:
When the solar wind gets past the magnetic field and travels towards the Earth, it runs into the atmosphere. As the protons and electrons from the solar wind hit the particles in the Earth's atmosphere, they release energy – and this is what causes the northern lights.
Amplitude, is the answer to the question
(1) The position around equilibrium of an object in simple harmonic motion is described by

where
A is the amplitude of the motion

is the angular frequency.
The velocity is the derivative of the position:

where

is the maximum velocity of the object.
The acceleration is the derivative of the velocity:

where

is the maximum acceleration of the object.
We know from the problem both maximum velocity and maximum acceleration:


From the first equation, we get

(1)
and if we substitute this into the second equation, we find the angular fequency

while the amplitude is (using (1)):

(b) We found in the previous step that the angular frequency of the motion is

But the angular frequency is related to the period by

and so, the period is
The horizontal speed has no effect on how long it takes to reach the ground.
A bullet shot from a gun and a bullet dropped from the front end of the gun
at the same time as the shot both hit the ground at the same time.
The number that counts is the height from which it fell . . . the 1.25 m.
I'll use this very useful formula:
Distance of free fall,
starting from rest = (1/2) · (gravity) · (time)²
1.25 m = (1/2) · (9.8 m/s²) · (time)²
Divide each side
by 4.9 m/s² : 1.25 m / 4.9 m/s² = time²
0.2551 sec² = time²
Square root each side: 0.505 sec = time
It looks like the correct choice is approximately 'A'. (rounded)