Answer:
2.3 newtons of force
Explanation:
Divide the weight by the speed of the bike
Answer:
Dy = 111.66 [m]
t = 3.5 [s]
Explanation:
To solve this problem we must use the equations of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 27 [m/s]
g = gravity acceleration = 9.81 [m/s²]
t = time = 3.5 [s]
Note: The negative sign of the equation means that the gravity acceleration goes in opposite direction
Vf = 27 - (9,81*3,5)
Vf = - 7.33 [m/s] (this negative sign indicates that at this moment the snowball is going downwards)
To find how high the snowball was we must use the following equation:

Dy = (27*3.5) + (0.5*9.81*3.5)
Dy = 94.5 + (17.16)
Dy = 111.66 [m]
Draw a vector diagram. The net force on particle 1 = F12 + F13 + F14 These forces have to be added as vectors.
We will resolve our forces along the direction 1-4 F12 (tot) = -kQq / a^2 in the direction of particle 4 F12 = -kQq *sin (45) / a^2 F12 = -kQq /( a^2 * sqrt(2) )
By symetry this is the same as F13 F13 = -kQq /( a^2 * sqrt(2) )
F14 = -kQQ / (Sqrt(2)*a) ^ 2
For net force on particle 1 :
F12+F13+F14 = 0 -2kQq /( a^2 * sqrt(2) ) + -kQQ / (Sqrt(2)*a) ^ 2 = 0
Some simple manipulation should give you :
Q/q = -2 sqrt(2)
Answer:
The relative size of an object serves as an important monocular cue for depth perception. It works like this: If two objects are roughly the same size, the object that looks the largest will be judged as being the closest to the observer. This applies to three-dimensional scenes as well as two-dimensional images.
Explanation:
Answer:
b = 0.89
Explanation:
The given vector is, 
A is a unit vector
We need to find the value of b.
For a unit vector, |A| = 1
So,

So, th value of b is 0.89.