1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
7

A conducting sphere contains positive charge distributed uniformly over its surface. Which statements about the potential due to

this sphere are true? All potentials are measured relative to infinity
a. The potential at the center of the sphere is zero.
b.The potential is lowest, but not zero, at the center of the sphere.
c. The potential at the center of the sphere is the same as the potential at the surface.
d. The potential at the center is the same as the potential at infinity.
e. The potential at the surface is higher than the potential at the center.
Physics
1 answer:
stira [4]3 years ago
8 0

Answer:

a. FALSE

b. FALSE

c. TRUTH

d. FALSE

e. FALSE

Explanation:

To determine which statements are truth or false you focus in the following formula, for the electric potential generated by a conducting sphere:

V=\frac{Q}{4\pi \epsilon_o R}      inside the sphere

V'=\frac{Q}{4\pi \epsilon_o r}      for r > R (outside the sphere)

R: radius of the sphere

ε0: dielectric permittivity of vacuum

Q: charge of the sphere

As you can notice, inside the sphere the potential is constant. Inside the sphere, the potential is the same. Outside the surface the potential decreases as 1/r, being r the distance to the center of the sphere.

Hence, you can conclude:

a. The potential at the center of the sphere is zero. FALSE

b.The potential is lowest, but not zero, at the center of the sphere. FALSE

c. The potential at the center of the sphere is the same as the potential at the surface. TRUTH

d. The potential at the center is the same as the potential at infinity. FALSE

e. The potential at the surface is higher than the potential at the center. FALSE

You might be interested in
Objects 1 and 2 attract each other with a gravitational force of 12 units. If the mass of Object 2 is tripled, then the new grav
olasank [31]

Explanation:

Fgravity = G*(mass1*mass2)/D².

G is the gravitational constant, which has the same value throughout our universe.

D is the distance between the objects.

so, if you triple one of the masses, what does that do to our equation ?

Fgravitynew = G*(3*mass1*mass2)/D²

due to the commutative property of multiplication

Fgravitynew = 3* G*(mass1*mass2)/D² = 3* Fgravity

so, the right answer is 3×12 = 36 units.

5 0
2 years ago
Steam is to be condensed on the shell side of a heat exchanger at 150 oF. Cooling water enters the tubes at 60 oF at a rate of 4
zalisa [80]

Answer:

a. 572Btu/s

b.0.1483Btu/s.R

Explanation:

a.Assume a steady state operation, KE and PE are both neglected and fluids properties are constant.

From table A-3E, the specific heat of water is c_p=1.0\ Btu/lbm.F, and the steam properties as, A-4E:

h_{fg}=1007.8Btu/lbm, s_{fg}=1.6529Btu/lbm.R

Using the energy balance for the system:

\dot E_{in}-\dot E_{out}=\bigtriangleup \dot E_{sys}=0\\\\\dot E_{in}=\dot E_{out}\\\\\dot Q_{in}+\dot m_{cw}h_1=\dot m_{cw}h_2\\\\\dot Q_{in}=\dot m_{cw}c_p(T_{out}-T_{in})\\\\\dot Q_{in}=44\times 1.0\times (73-60)=572\ Btu/s

Hence, the rate of heat transfer in the heat exchanger is 572Btu/s

b. Heat gained by the water is equal to the heat lost by the condensing steam.

-The rate of steam condensation is expressed as:

\dot m_{steam}=\frac{\dot Q}{h_{fg}}\\\\\dot m_{steam}=\frac{572}{1007.8}=0.5676lbm/s

Entropy generation in the heat exchanger could be defined using the entropy balance on the system:

\dot S_{in}-\dot S_{out}+\dot S_{gen}=\bigtriangleup \dot S_{sys}\\\\\dot m_1s_1+\dot m_3s_3-\dot m_2s_2-\dot m_4s_4+\dot S_{gen}=0\\\\\dot m_ws_1+\dot m_ss_3-\dot m_ws_2-\dot m_ss_4+\dot S_{gen}=0\\\\\dot S_{gen}=\dot m_w(s_2-s_1)+\dot m_s(s_4-s_3)\\\\\dot S_{gen}=\dot m c_p \ In(\frac{T_2}{T_1})-\dot m_ss_{fg}\\\\\\\dot S_{gen}=4.4\times 1.0\times \ In( {73+460)/(60+460)}-0.5676\times 1.6529\\\\=0.1483\ Btu/s.R

Hence,the rate of entropy generation in the heat exchanger. is 0.1483Btu/s.R

4 0
4 years ago
Consider a situation of simple harmonic motion in which the distance between the endpoints is 2.39 m and exactly 8 cycles are co
aivan3 [116]

Answer:

1.195 m

2.8375 s

2.21433 rad/s

Explanation:

d = Distance = 2.39 m

N = Number of cycles = 8

t = Time to complete 8 cycles = 22.7 s

Radius would be equal to the distance divided by 2

r=\frac{d}{2}\\\Rightarrow r=\frac{2.39}{2}\\\Rightarrow r=1.195\ m

The radius is 1.195 m

Time period would be given by

T=\frac{t}{N}\\\Rightarrow T=\frac{22.7}{8}\\\Rightarrow T=2.8375\ s

Time period of the motion is 2.8375 s

Angular speed is given by

\omega=\frac{2\pi}{T}\\\Rightarrow \omega=\frac{2\pi}{2.8375}\\\Rightarrow \omega=2.21433\ rad/s

The angular speed of the motion is 2.21433 rad/s

4 0
4 years ago
CClassify each characteristic of sound waves.
Alex787 [66]

Explanation : Explain each characteristic of sound waves.

Intensity : the intensity of the sound wave is understand as the power carry by sound wave per unit area in the direction perpendicular to that area.

Loudness :  loudness is the quality of the loud and soft of the sound wave.

Frequency : Human normal hear sound frequency between 20 Hz to kHz.

Pitch : Pitch is the quality of low and high of sound wave . pitch relates to the frequency of the slowest vibration in the sound wave for simple sound.

4 0
4 years ago
Read 2 more answers
1. A large ball was let go on a hill and started rolling down with a constant acceleration of 4.2 m/s². What was the velocity of
pochemuha

Answer:

<em>The velocity after 12s is 50.4m/s</em>.

Explanation:

<em>In acceleration formula make velocity the </em><em>subject.</em>

<em> acceleration(a) = velocity(</em>v)÷time(t)

<h3><em> </em><em>velocity</em><em> </em><em>(</em><em>v)</em><em> </em><em>=</em><em> </em><em>acceleration</em><em>(</em><em>a)</em><em>×</em><em>t</em><em>ime</em><em>(</em><em>t)</em></h3>

<em>V </em><em>=</em><em> </em><em>4</em><em>.</em><em>2</em><em>m</em><em>/</em><em>s²</em><em>×</em><em>1</em><em>2</em><em>s</em>

<em>V </em><em>=</em><em> </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s</em>

<em>Therefore</em><em> the</em><em> </em><em>velocity</em><em> </em><em>after</em><em> </em><em>1</em><em>2</em><em>s</em><em> </em><em>is </em><em>5</em><em>0</em><em>.</em><em>4</em><em>m</em><em>/</em><em>s.</em>

8 0
2 years ago
Other questions:
  • Comets travel in orbits around the Sun. Some comets take less than 200 years to orbit the Sun. They are called short-period come
    15·2 answers
  • What is the result of two displacement vectors having opposite directions?
    6·2 answers
  • If an object moves in uniform circular motion in a circle of radius R = 1.0 meter, and the object takes 4.0 seconds to complete
    6·2 answers
  • The amount of work done to produce a sound determines which property of sound waves?
    9·2 answers
  • A ball is thrown into the air with 100 J of kinetic energy, which is transformed to gravitational potential energy
    14·1 answer
  • Iron (II) hydroxide, whose chemical formula is shown here, is soluble in different solutions. In which solution would the Iron (
    12·1 answer
  • A gold wire has a cross-sectional area of 1.0 cm^2 and a resistivity of 2.8 × 10^-8 Ω ∙ m at 20°C. How long would it have to be
    15·1 answer
  • Two objects each with a mass of 5x10^15 kg have a gravitational
    6·1 answer
  • What are the formulae of momentun and their time of use​
    14·1 answer
  • A crate of mass 50kg is pushed along a floor with a force of 20N for a distance of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!