Answer:
Individually well, defined identical chemically units such as molecules, ions, atoms, or electrons
Explanation:
The mole is used as the unit of measurement for substance such as molecules, ions, atoms, or electrons. One mole of a substance is equivalent to 6.02×10²³ particles of the substance. The number, 6.02 × 10²³ is known as Avogadro's number.
The particles quantified as moles are individually well, defined identical chemically units such that the mole can be used to describe a part of a substance or the whole substance consisting of several moles of the substance combined.
Iodic acid partially dissociates into H+ and IO3-
Assuming that x is the concentration of H+ at equilibrium, and sine the equation says the same amount of IO3- will be released as that of H+, its concentration is also X. The formation of H+ and IO3- results from the loss of HIO3 so its concentration at equilibrium is 0.20 M - x
Ka = [H+] [IO3-] / [HIO3];
<span>Initially, [H+] ≈ [IO3-] = 0 and [HIO3] = 0.20; </span>
<span>At equilibrium [H+] ≈ [IO3-] = x and [HIO3] = 0.20 - x; </span>
<span>so 0.17 = x² / (0.20 - x); </span>
<span>Solving for x using the quadratic formula: </span>
<span>x = [H+] = 0.063 M or pH = - log [H+] = 1.2.</span>
Answer:
Well, one is if heat is absorbed by the system from the surroundings, the system gains heat from the surroundings and so the temperature of the surroundings decreases.
Explanation:
Answer: The rate constant for the reaction is 
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample = 559 min
a = let initial amount of the reactant = 
a - x = amount left after decay process = 



The rate constant for the reaction is 