Answer:
The answer to your question is vo = 5.43 m/s
Explanation:
Data
distance = d= 5.8 m
height = 3 m
height 2 = 1.7 m
angle = 60°
vo = ?
g = 9.81 m/s²
Formula
hmax = vo²sinФ/ 2g
Solve for vo²
vo² = 2ghmax / sinФ
Substitution
vo² = 2(9.81)(3 - 1.7) / 0.866
Simplification
vo² = 19.62(1.3) / 0.866
vo² = 25.51 / 0.866
vo² = 29.45
Result
vo = 5.43 m/s
If you were given distance & period of time, you would be able to calculate the speed.
Hope this helps!
Answer:
The answer is "
"
Explanation:
For point a:
Energy balance equation:


From the above equation:

because the rate of air entering the tank that is
constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between
. The surrounding air
temperature:

Substituting the value from ideal gas:

Follow the ideal gas table.
The
and between temperature
Interpolate

Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas.
(M is the molar mass of the gas that is
and R is gas constant), and T is the temperature.


For point c:
Entropy is given by the following formula:

Answer:
Negative 9.8 meters per second squared
Explanation:
The negative is for the direction (down, towards the center of the earth). Often this can be estimated as -10 m/s^2 to make calculations easier.
The hiker followed the north trail a distance of two kilometers in thirty minutes is an example that provides a complete scientific description of an object in motion.