Answer:
96 m
Explanation:
Given,
Initial velocity ( u ) = 4 m/s
Final velocity ( v ) = 20 m/s
Time ( t ) = 8 s
Let Acceleration be " a ".
Formula : -
a = ( v - u ) / t
a = ( 20 - 4 ) / 8
= 16 / 8
a = 2 m/s²
Let displacement be " s ".
Formula : -
s = ut + at² / 2
s = ( 4 ) ( 8 ) + ( 2 ) ( 8² ) / 2
= 32 + ( 2 ) ( 64 ) / 2
= 32 + ( 2 ) ( 32 )
= 32 + 64
s = 96 m
Therefore, it travels 96 m in time 8 s.
Answer:
When in free fall, the only force acting upon your body is the force of gravity - a non-contact force. Since the force of gravity cannot be felt without any other opposing forces, you would have no sensation of it. You would feel weightless when in a state of free fall.
Answer:
Option (b) is correct.
Explanation:
Elastic collision is defined as a collision where the kinetic energy of the system remains same. Both linear momentum and kinetic energy are conserved in case of an elastic collision.
Inelastic collision is defined as a collision where kinetic energy of the system is not conserved whereas the linear momentum is conserved. This loss of kinetic energy may due to the conversion to thermal energy or sound energy or may be due to the deformation of the materials colliding with each other.
As given in the problem, before the collision, total momentum of the system is
and the kinetic energy is
. After the collision, the total momentum of the system is
, but the kinetic energy is reduced to
. So some amount of kinetic energy is lost during the collision.
Therefor the situation describes an inelastic collision (and it could NOT be elastic).