Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
Hello
Here we must use the equation of motion
v^2 = u^2 + 2as; where v is final velocity, u is initial velocity, a is the acceleratoin and is the distance travelled.
We select this one because the time of collision is unknown to us.
We know the truck stopped so its final velocity is 0; thus v = 0.
Converting the initial velocity to SI units, we get 3.89 m/s.
The distance traveled, s, is 0.062 meters.
Inserting all of these values into the equation,
0 = (3.89)^2 + 2(a)(0.062)
and solving for a, we get a to be
-122.0 ms^(-2)
The negative sign indicates the acceleration is in the opposite direction to the initial motion, which means the truck decelerated. This is consistent with the given condition.
For a wave is described by y=0.0200 sin (kx - ωt) , where , ω = 3.62 rad/s, x and y are in meters, and t is in seconds, the wavelength = 2.978
<h3>How to solve for the wavelength</h3>
What is wave speed?
This is used to refer to the speed at which a wave is moving. It is the product of frequency and wave number
Given data
y=0.0200 sin (kx - ωt)
ω = 3.62 rad/s
y are in meters
t is in seconds
k = 2.11 rad/m
k = wavenumber = 2 * pi / wavelength
wavelength = 2 * pi / wavenumber
wavelength = 2 * pi / 2.11
wavelength = 2.978
Read more on wavelength here
brainly.com/question/10728818
#SPJ4
Gravity Gravitational Force of Gravity