Answer:
describes properties characteristic of no more than two electrons in the vicinity of an atomic nucleus or of a system of nuclei as in a molecule
Answer:
V₂ = 0.656 L
Explanation:
Given data:
Initial volume = 3.5 L
Initial pressure = 2.5 KPa
Final volume = ?
Final pressure = 100 mmHg (100/7.501=13.33 KPa)
Solution:
The given problem will be solved through the Boyle's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
2.5 KPa × 3.5 L = 13.33 KPa × V₂
V₂ = 8.75 KPa. L/13.33 KPa
V₂ = 0.656 L
Answer:
5kg
Explanation:
Force = Mass x acceleration
F = ma
m = F/a = 10N/2m/s^2
m = 10/2 = 5kg
The standard unit for mass = Kilogram
Answer: 4Kcal
Explanation:
H= mcø
M=200g
C= 1 cal/g/°c
Ø= 40-20=20°c
H= 200*1*20= 4000calories= 4Kcal
Answer:
I would use calorimetric to determine the specific heat and I would measure the mass of a sample
Explanation:
I would use calorimetry to determine the specific heat.
I would measure the mass of a sample of the substance.
I would heat the substance to a known temperature.
I would place the heated substance into a coffee-cup calorimeter containing a known mass of water with a known initial temperature.
I would wait for the temperature to equilibrate, then calculate temperature change.
I would use the temperature change of water to determine the amount of energy absorbed.
I would use the amount of energy lost by substance, mass, and temperature change to calculate specific heat.