The arrangement of molecules within the 3 phases of matter are shown in the picture.
For the solid, the molecules are packed closely together. They don't have much space to move, so they just practically vibrate. For the liquid, the molecules are relatively farther from each other. The liquid molecules can flow freely but not as much as the gases. In the gases, the molecules are very far from each other. They are very sensitive to slight changes of pressure, volume and temperature.
It's the person that you in love with.<span />
Answer: The last electron will be filled in first orbital of 3p sub-shell.
Explanation: Filling of electrons in orbitals is done by using Hund's Rule.
Hund's rule states that the electron will be singly occupied in the orbital of the sub-shell before any orbital is doubly occupied.
For filling up of the electrons in Sulfur atom having 16 electrons. First 10 electrons will completely fill according to Aufbau's Rule in 1s, 2s and 2p sub-shells and last 6 electrons are the valence electrons which will be filled in the order of 3s and then 3p.
3s sub-shell will be fully filled and the orbitals of 3p sub-shell will be first singly occupied and then pairing will take place. Hence, the last electron will be filled in the first orbital of 3p-sub-shell.
its 8 im positive i had the same question
Answer: Mass Of CFC that needs to evaporate for the freezing of water = 328.24 g
Explanation: Heat gained by the CFC = Heat lost by water
Heat lost by water = Heat required to take water's temperature to 0°c + Heat required to freeze water at 0°c
Heat required to take water's temperature from 33°c to 0°c = mCΔT
m = 201g, C = 4.18 J/(gK), ΔT = 33
mCΔT = 201 × 4.18 × 33 = 27725.94 J
Heat required to freeze water at 0°c = mL
m = 201g, L = 334 J/g
mL = 201 × 334 = 67134 J
Heat gained by CFC to vaporize = mH = 27725.94 + 67134 = 94859.94 J
H = 289 J/g, m = ?
m × 289 = 94859.9
m = 328.24 g
QED!!