Answer:
option B is correct.
Y is a mixture in the picture.
Explanation:
Different types of substances combine physically and form a mixture.
Mixture formed by the combination of two or more substances that that combine in same physical state.
For example mixture of copper sulphate and solid chloride in dry form and that will look like white and blue crystal in a mixture.
The picture Z showing dots of same color and is not a mixture, while picture Y shows dots of different colors clearly indicating that it is picture for mixture.
The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is 
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{324^oC}}{K_{244^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7BK_%7B244%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 244°C = 
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![244^oC=[273+244]K=517K](https://tex.z-dn.net/?f=244%5EoC%3D%5B273%2B244%5DK%3D517K)
= final temperature = ![324^oC=[273+324]K=597K](https://tex.z-dn.net/?f=324%5EoC%3D%5B273%2B324%5DK%3D597K)
Putting values in above equation, we get:
![\ln(\frac{K_{324^oC}}{6.7})=\frac{71000J}{8.314J/mol.K}[\frac{1}{517}-\frac{1}{597}]\\\\K_{324^oC}=61.29M^{-1}s^{-1}](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7B6.7%7D%29%3D%5Cfrac%7B71000J%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B517%7D-%5Cfrac%7B1%7D%7B597%7D%5D%5C%5C%5C%5CK_%7B324%5EoC%7D%3D61.29M%5E%7B-1%7Ds%5E%7B-1%7D)
Hence, the rate constant at 324°C is 
I think the answer is 7mm but I'm not sure.
Have a great day!
Answer:
cerium (iii) sulfate is less soluble
A because if you multiple it, you will be moving the decimal one time