displacement is given by equation

now at t = 5 s the position is

similarly position at t = 9 s

so the displacement of object in given interval of time will be

time interval

now the average velocity will be given as


so its average speed is 252 m/s
1. GPE - 40 * 2 * 10 = 800j
Answer:
a) 0.477 W/m²
b) 13.407 N/C
c) 18.96 N/C
Explanation:
P = Power = 150 W
r = Distance = 5 m
ε₀ = Permittivity of space = 8.854×10⁻¹² F/m
a) Average intensity

∴ Average intensity is 0.477 W/m²
b) Rms value

∴ Rms value of the electric field is 13.407 N/C
c) Peak value

∴ Peak value of the electric field is 18.96 N/C
Answer:
5.25%
Explanation:
From the question given above, the following data were obtained:
Accepted value = 238857 miles
Measured value = 226316 miles
Percentage error =.?
Next, we shall determine the absolute error. This can be obtained as follow:
Accepted value = 238857 miles
Measured value = 226316 miles
Absolute Error =?
Absolute Error = |Measured – Accepted|
Absolute Error = |226316 – 238857|
Absolute Error = 12541
Finally, we shall determine the percentage error. This can be obtained as follow:
Accepted value = 238857 miles
Absolute Error = 12541
Percentage error =.?
Percentage error = absolute error / accepted value × 100
Percentage error
= 12541 / 238857 × 100
= 1254100 / 238857
= 5.25%
Therefore, the percentage error is 5.25%.
Answer:
4987N
Explanation:
Step 1:
Data obtained from the question include:
Mass (m) = 0.140 kg
Initial velocity (U) = 28.9 m/s
Time (t) = 1.85 ms = 1.85x10^-3s
Final velocity (V) = 37.0 m/s
Force (F) =?
Step 2:
Determination of the magnitude of the horizontal force applied. This can be obtained by applying the formula:
F = m(V + U) /t
F = 0.140(37+ 28.9) /1.85x10^-3
F = 9.226/1.85x10^-3
F = 4987N
Therefore, the magnitude of the horizontal force applied is 4987N