Answer:
q = 2.65 10⁻⁶ C
Explanation:
For this exercise we use Coulomb's law
F =
In this case they indicate that the load is of equal magnitude
q₁ = q₂ = q
the force is attractive because the signs of the charges are opposite
F =
q =
we calculate
q =
q =
Ra 7 10-12
q = 2.65 10⁻⁶ C
Acceleration of the both masses tied together= 6m/s²
Explanation:
The force is given by F= ma
so 5= m1 (8)
m1=0.625 Kg
for m2
5=m2 (24)
m2=0.208 kg
now total mass= m1+m2=0.625+0.208
Total mass=M=0.833 Kg
now F= ma
5= 0.833 (a)
a= 5/0.833
a=6m/s²
When you throw the ball in the air it is considered kinetic energy. Once the ball reaches its max height, it stops moving and all kinetic energy turns into potential energy. So when the ball is at its highest point.
Answer:
C. Pressure gradient equals gas flow over resistance.
Explanation:
As we know that pressure gradient is the driving force for the gas to flow from one point to other point
And we know that the flow rate is directly proportional to the driving force and it inversely depends on the resistance to flow
so we can say
Flow Rate = 
Flow Rate = 
so we can say that correct statements are as below
A. Gas flow equals pressure gradient over resistance.
B. Resistance equals pressure gradient over gas flow.
D. The amount of gas flowing in and out of the alveoli is directly proportional to the difference in pressure or pressure gradient between the external atmosphere and the alveoli.