-- From January 15 to February 6 is a period of 22 days.
-- The period of the full cycle of moon phases is 29.53 days.
-- So those dates represent (22/29.53) = 74.5% of a full cycle of phases.
-- That's almost exactly 3/4 of a full cycle, so on February 6, the moon would be almost exactly at <em>Third Quarter</em>. That's the <em>left half of a disk </em>(viewed from the northern hemisphere).
The first: alright, first: you draw the person in the elevator, then draw a red arrow, pointing downwards, beginning from his center of mass. This arrow is representing the gravitational force, Fg.
You can always calculate this right away, if you know his mass, by multiplying his weight in kg by the gravitational constant

let's do it for this case:

the unit of your fg will be in Newton [N]
so, first step solved, Fg is 637.65N
Fg is a field force by the way, and at the same time, the elevator is pushing up on him with 637.65N, so you draw another arrow pointing upwards, ending at the tip of the downwards arrow.
now let's calculate the force of the elevator

so you draw another arrow which is pointing downwards on him, because the elevator is accelating him upwards, making him heavier
the elevator force in this case is a contact force, because it only comes to existence while the two are touching, while Fg is the same everywhere
Answer:
The gravity is pulling the diver downwards but the rotation of the body means gravity cant pull him down as quickly
Explanation:
Answer:
The contribution of the wavelets lying on the back of the wave front is zero because of something known as the Obliquity Factor. It is assumed that the amplitude of the secondary wavelets is not independent of the direction of propagation, Sources: byju's.com
Answer:
B) Power is the rate at which work is done