The molar mass of a, b and c at STP is calculated as below
At STP T is always= 273 Kelvin and ,P= 1.0 atm
by use of ideal gas equation that is PV =nRT
n(number of moles) = mass/molar mass therefore replace n in the ideal gas equation
that is Pv = (mass/molar mass)RT
multiply both side by molar mass and then divide by Pv to make molar mass the subject of the formula
that is molar mass = (mass x RT)/ PV
density is always = mass/volume
therefore by replacing mass/volume in the equation by density the equation
molar mass=( density xRT)/P where R = 0.082 L.atm/mol.K
the molar mass for a
= (1.25 g/l x0.082 L.atm/mol.k x273k)/1.0atm = 28g/mol
the molar mass of b
=(2.86g/l x0.082L.atm/mol.k x273 k) /1.0 atm = 64 g/mol
the molar mass of c
=0.714g/l x0.082 L.atm/mol.K x273 K) 1.0atm= 16 g/mol
therefore the
gas a is nitrogen N2 since 14 x2= 28 g/mol
gas b =SO2 since 32 +(16x2)= 64g/mol
gas c = methaneCH4 since 12+(1x4) = 16 g/mol
Explanation:
Hydrogen (H)
Helium (He)
Lithium (Li)
Beryllium (Be)
Boron (B)
Carbon (C)
Nitrogen (N)
Oxygen (O)
Fluorine (F)
Neon (Ne)
Sodium (Na)
Magnesium (Mg)
Aluminum (Al)
Silicon (Si)
Phosphorus (P)
Sulfur (S)
Chlorine (Cl)
Argon (Ar)
Potassium (K)
Calcium (Ca)
Hope this is correct and helpful
HAVE A GOOD DAY!
The law of conservation of energy has not been broken, provided energy is released from the fission process.
<h3>What is the law of conservation of energy?</h3>
The law states that the total energy of a process is conserved. That is, the total energy or mass of a system before and after undergoing processing remains the same. However, some of the mass/energy can be converted to another form.
When a material undergoes fission, the sum total of the mass of the particles formed should be equal to the mass of the starting materials, provided that all other things remain the same.
However, if energy is released from the fission process, it means that some of the mass of the starting materials has been converted to energy and released to the environment.
More on the law of conservation of energy can be found here: brainly.com/question/20971995
#SPJ1
Calcium Floride (Caf2)
Hope this helped =D
<span>Heavy metals like mercury enter waterways by industrial dumping and poor regulatioin of effluent, and they also enter soil through a similar manner, in which waste is disposed of imporperly. Another source of heavy metals are the gases leaving industry carrying these metals. The metals fall as a solid on to soil and water ways. Therefore, the answer is D.</span>