Answer:
See explanation
Explanation:
Full molecular equation;
2NH3(aq) + AgNO3(aq) -------> [Ag(NH3)2]NO3(aq)
Full ionic equation
2NH3(aq) + Ag^+(aq) + NO3^-(aq) --------> [Ag(NH3)2]^+(aq) + NO3^-(aq)
Net ionic equation;
2NH3(aq) + Ag^+(aq) --------> [Ag(NH3)2]^+(aq)
When Silver nitrate is mixed with a solution of aqueous ammonia, a white and cloudy solution was observed.
Answer:
0.0277 M.
Explanation:
The integral rate law of a first order reaction:
<em>Kt = ln ([A₀]/[A]),</em>
where, k is the rate constant of the reaction <em>(k = 3.36 × 10⁻⁵ s⁻¹)</em>,
t is the time of the reaction <em>(t = 235.0 min = 14100 s)</em>,
[A₀] is the initial concentration of cyclopropane <em>([A₀] = 0.0445 M)</em>
<em>∵ Kt = ln ([A₀]/[A]),</em>
∴ (3.36 × 10⁻⁵ s⁻¹)(14100 s) = ln (0.0445 M)/[A]
Taking the exponential of both sides:
1.6 = (0.0445 M)/[A]
<em>∴ [A] = (0.0445 M)/1.6 = 0.0277 M.</em>
<em />
The pressure of gas will increase because gaseous state is the final state and even if the heat added is evaporating some more gas is still added. It also depends on the temperature of heat added, if the temperature doesn't change the it's most likely for the pressure to be stable...
Hope it helps
If the concentration of acetyl chloride is increased ten times the rate of reaction is increased ten times.
The conversion of acetyl chloride to methyl acetate is a substitution reaction. Recall that a substitution reaction is one in which a moiety in a molecule is replaced by another.
In this reaction, the CH3O- ion replaces the chloride ion. In the first step, the CH3O- ion attacks the substrate in a slow step. This creates a tetrahedral intermediate. Loss of the chloride ion yields the methyl acetate product.
The rate determining step is the formation of the tetrahedral intermediate. Since the reaction is first order in the acetyl chloride, if its concentration is increased ten times the rate of reaction is increased ten times.
Learn more: brainly.com/question/5624100