Answer:
11.99
% ≅ 12.0%.
Explanation:
∵ mass % = [mass of solute/mass of solution] x 100.
mass of solute (CaCl₂) = 8.87 g & mass of solution = 8.87 g + 65.1 g = 73.97 g.
<em>∴ mass % of (CaCl₂) = [mass of solute/mass of solution] x 100 </em>= (
8.87 g/ 73.97 g) x 100 = <em>11.99
% ≅ 12.0%.</em>
Disadvantages of aluminum in building cars include:
On average, aluminum is more expensive than steel, as much as two to three times.
Aluminum is not easily welded. If a steel door or panel suffers a crack, often it cam be welded back together easily, primed and repainted so its difficult to tell any body work has been performed. This cannot be done with aluminum. Steel also can be bent and shaped as needed.
Body shops and even dealer service centers are currently equipped for steel work with technicians skilled in the art of welding and steel fabrication. The cost of switching over to an infra structure designed specifically for all-aluminum vehicles or mass production of aluminum vehicles and components would be high.
Using the answer from the first part, we know that 2.957 moles of bismuth have formed. Moreover, the molar ratio between bismuth and carbon monoxide is:
2 : 3
Using the method of ratios,
2 : 3
2.957 : CO
CO = (3 * 2.957) / 2
CO = 4.4355
4.436 moles of carbon monoxide will be formed
The molecule that contains the fewest number of Hydrogen atoms would be B. Al(OH)3. It only has 3 Hydrogen atoms.
Answer:
We have the final answer as
Explanation:
To find the energy of a photon of this light we use the formula
<h3>E = hf</h3>
where
E is the energy
f is the frequency
h is the Planck's constant which is
6.626 × 10-³⁴ Js
From the question
f = 7.08×10¹⁴ Hz
We have
E = 7.08×10¹⁴ × 6.626 × 10-³⁴
We have the final answer as
Hope this helps you