Answer and Explanation:
How to Calculate the Percent Abundance of an Isotope
Step 1: Find the Average Atomic Mass. Identify the atomic mass of the element from your isotopic abundance problem on the periodic table. ...
Step 2: Set Up the Relative Abundance Problem. ...
Step 3: Solve for x to Get the Relative Abundance of the Unknown Isotope. ...
Step 4: Find percent abundance.
To calculate this, we need the Molarity formula. This formula tell us that Molarity, which is a concentration unit, is equal to the number of moles divided by the volume. In this question we already have the Molarity and the Volume, so let's build our equation:
C = n/V (You can see Molarity with the letter "C" because it means concentration)
3 = n/1
n = 1 * 3
n = 3 moles of NaOH
<u>Answer:</u> The
for HCN (g) in the reaction is 135.1 kJ/mol.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(HCN)})+(6\times \Delta H_f_{(H_2O)})]-[(2\times \Delta H_f_{(NH_3)})+(3\times \Delta H_f_{(O_2)})+(2\times \Delta H_f_{(CH_4)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-870.8=[(2\times \Delta H_f_{(HCN)})+(6\times (-241.8))]-[(2\times (-80.3))+(3\times (0))+(2\times (-74.6))]\\\\\Delta H_f_{(HCN)}=135.1kJ](https://tex.z-dn.net/?f=-870.8%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCN%29%7D%29%2B%286%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%28-80.3%29%29%2B%283%5Ctimes%20%280%29%29%2B%282%5Ctimes%20%28-74.6%29%29%5D%5C%5C%5C%5C%5CDelta%20H_f_%7B%28HCN%29%7D%3D135.1kJ)
Hence, the
for HCN (g) in the reaction is 135.1 kJ/mol.
102 grams.
Equation:
Quantify of heat = mass x specific heat x difference in temperature
We have: quantity of heat : 2300J
specific heat: .449 J/g
difference in t: 80 - 30 = 50
Solve for mass: 2300 = mass x 0.449 x 50
mass = 102.449
2 sig-figs --> 102 grams