Answer:
The original concentration of ethanol was 18 % (v/v)
Explanation:
For the analysis of a sample, mostly dilutions are made of the original concentrated sample. The analysis results obtained from the diluted sample are then calculated for the concentrated samples.
According to the given data, the wine sample was diluted 75 times. This means that the initial concentration of ethanol was 75 times more than the final concentration i.e. 0.24 % (v/v). So mathematically:
original concentration (v/v)= final concentration (v/v) x times diluted
original concentration (v/v)= 0.24 % x 75
original concentration (v/v) = 18 %
Molarity of solution is defined as number of moles present in one liter solution. Mathematically, it is expressed as
Molarity =

Thus, if 1 mole of solute is present in 1 liter solution, molarity of solution is 1 M.
In present case, initial conc, of solution was 1.25 M.
∴ Number of moles of <span>co[h2o]6cl2 available initially = 1.25 mole, if the solution is 1 liter</span>
Answer:
3.61 * 10 ²⁴atoms.
Explanation:
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = 582 g
m = 194 g/mol
The number of moles can be calculated from the above formula , and substituting the respective values ,
n = w / m = 582 g / 194 g/mol = 3 mol
In the molecular formula of caffeine ,
<u>In 1 mole of caffeine their are - 2 moles of Oxygen.
</u>
Therefore , in 3 moles of Caffeine there will be 6 moles of oxygen.
As well know ,
one mole of any substance contains 6.023*10²³ atoms,
Therefore , in 6 mol of oxygen = 6 * 6.023*10²³ atoms = 3.61 * 10 ²⁴atoms.
Answer:

Explanation:
This question asks us to find the temperature change given a volume change. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula is:

The volume of the gas starts at 250 milliliters and the temperature is 137 °C.

The volume of the gas is increased to 425 milliliters, but the temperature is unknown.

We are solving for the new temperature, so we must isolate the variable T₂. First, cross multiply. Multiply the first numerator and second denominator, then multiply the first denominator and second numerator.

Now the variable is being multiplied by 250 milliliters. The inverse of multiplication is division. Divide both sides of the equation by 250 mL.


The units of milliliters (mL) cancel.



The temperature changes to <u>232.9 degrees Celsius.</u>
Moles= mass divided by molar mass
Molar mass= 12.01(4) + 1.01(10)
= 58.14g/mol
Moles=14.5g / 58.14g/mol
=0.249
Therefore there are approx 0.249 moles in a 14.5g sample of C4H10