Answer: 10 m/s
Explanation: Velocity/Time
50/5= 10
:)
The liquid that will evaporate the quickest would be water.
<em>~The rest are mixtures, and have more ingrediants in them, therefore the answer should be water. (in which it has no other ingrediants in it but water itself)</em>
(a) The plane makes 4.3 revolutions per minute, so it makes a single revolution in
(1 min) / (4.3 rev) ≈ 0.2326 min ≈ 13.95 s ≈ 14 s
(b) The plane completes 1 revolution in about 14 s, so that in this time it travels a distance equal to the circumference of the path:
(2<em>π</em> (23 m)) / (14 s) ≈ 10.3568 m/s ≈ 10 m/s
(c) The plane accelerates toward the center of the path with magnitude
<em>a</em> = (10 m/s)² / (23 m) ≈ 4.6636 m/s² ≈ 4.7 m/s²
(d) By Newton's second law, the tension in the line is
<em>F</em> = (1.3 kg) (4.7 m/s²) ≈ 6.0627 N ≈ 6.1 N
Answer:
The answer is D 100 newton
Explanation:
2.0m/s2 is d acceleration while the 50kg is the mass. Force = mass x acceleration. So f=50x2.so force is 100 newton
Answer:
a) the one with a lower orbit b) the one with a higher orbit
Explanation:
Let's consider orbital mechanics. To get an object in orbit, we need it to fall to earth parallel to the earth's surface. To understand it easily imagine a projectile thrown horizontally further and further away, at one point, the projectile hits the cannon from behind. Considering there is no wind resistance, that would be a projecile in orbit.
In other words, the circular orbits of some objects around a massive body are due to the equality between centrifugal acceleration and gravity acceleration.
.
so the velocity is

where "G" is the gravitational constant, "M" the mass of the massive body and "r" the distance between the object and the center of gravity of mass M. As you can note, if "r" increase, "v" decrease.
The orbital period of any object in orbit is

where "a" is length of semi-major axis (a = r in circular orbits). So if "r" increase, "T" increase.