The minimum speed needed a non-propelled object to escape from the gravitational influence of a massive body, that is to achieve an infinite distance from it. I think
Answer:
<h2>0.245cm/min</h2>
Explanation:
The volume of the spherical balloon is expressed as V = 4/3πr³ where r is the radius of the spherical balloon. If the spherical balloon is inflated with gas at the rate of 500 cubic centimetres per minute then dV/dt = 500cm³.
Using chain rule to express dV/dt;
dV/dt = dV/dr*dr/dt
dr/dt is the rate at which the radius of the gallon is increasing.
From the formula, dV/dr = 3(4/3πr^3-1))
dV/dr = 4πr²
dV/dt = 4πr² *dr/dt
500 = 4πr² *dr/dt
If radius r = 40;
500 = 4π(40)² *dr/dt
500 = 6400π*dr/dt
dr/dt = 500/6400π
dr/dt = 5/64π
dr/dt = 0.245cm/min
Hence, the radius of the balloon is increasing at the rate of 0.245cm/min
Many of today’s mathematicians use computers to test cases that are either too time-consuming or involve too many variables to test manually, allowing the exploration of theoretical issues that were impossible to test a generation ago.
Answer: Option A
<u>Explanation:</u>
One of the most useful inventions in scientific world are the computers. We can use different programming language and create programs in them. These programs help other to solve difficult problems. Most of the theoretical problems in science can be solved by using these programming features in computer within a specific time limit.
Otherwise, earlier mathematician used to take months to solve a complex mathematical problem manually, but now with the inclusion of computers, the mathematician can solve the problems containing more number of variables or other theoretical issues.