Potential energy behind dams
Answer:
1.because of the heat produced by the socat
2. they should have control how they placed the heater
3. because the water is to much
4.because is different from the question
5. because that is how the question is
Given that force is applied at an angle of 30 degree below the horizontal
So let say force applied if F
now its two components are given as


Now the normal force on the block is given as



now the friction force on the cart is given as



now if cart moves with constant speed then net force on cart must be zero
so now we have




so the force must be 199.2 N
The maximum rate at which energy can be added to the circuit element mathematically given as

<h3>What is the maximum rate at which
energy can be added to the
circuit element?</h3>
Generally, the equation for P is mathematically given as

Therefore



Max temp Change


t=180s
In conclusion, Max Energy Rate


Read more about Energy
brainly.com/question/13439286
#SPJ1
Answer:
58.37 V
Explanation:
Given that
Number of winding on coil, N = 80 turns
Area of the coil, A = 25 cm * 40 cm = 0.25 m * 0.4 m
Magnitude of magnetic force, B = 1.1 T
Time of rotation, t = 0.06 s
See the attachment for calculations