1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
3 years ago
5

A corn ethanol production plant receives 500,000.0 kg/day corn feedstock at a moisture content of 15.5% (wet basis). If all of t

his corn is converted into ethanol what is the theoretical volume of ethanol that this facility can produce per day? Assume that the starch content of corn grain is 68.5%. The density of ethanol is 789 kg/m3.
Engineering
1 answer:
Alenkasestr [34]3 years ago
4 0

Answer:

207 m³/day

Explanation:

Dry corn feed stock = 500000 × ( 100 - 15.5%) = 500000 × 84.5% = 500000× 0.845 = 422500

Starch yield = 68.5% × 422500 = 289412.5

Glucose yield = 1.11 × 289412.5 = 321247.875 where 1.11 is the scarification factor of starch to glucose

Ethanol yield = 0.51 × 321247.875 = 163836.416 where 0.51 is theoretical yield of ethanol from one mole of glucose

density = mass / volume

volume = mass / density = 163836.416 / 789 = 207 m³ / day

You might be interested in
The following electrical characteristics have been determined for both intrinsic and p-type extrinsic gallium antimonide (GaSb)
xxTIMURxx [149]

Answer:

0.5m^2/Vs and 0.14m^2/Vs

Explanation:

To calculate the mobility of electron and mobility of hole for gallium antimonide we have,

\sigma = n|e|\mu_e+p|e|\mu_h (S)

Where

e= charge of electron

n= number of electrons

p= number of holes

\mu_e= mobility of electron

\mu_h=mobility of holes

\sigma = electrical conductivity

Making the substitution in (S)

Mobility of electron

8.9*10^4=(8.7*10^{23}*(-1.602*10^{-19})*\mu_e)+(8.7*10^{23}*(-1.602*10^{-19})*\mu_h)

0.639=\mu_e+\mu_h

Mobility of hole in (S)

2.3*10^5 = (7.6*10^{22}*(-1.602*10^{-19})*\mu_e)+(1*10^{25}*(-1.602*10^{-19}*\mu_h))

0.1436 = 7.6*10^{-3}\mu_e+\mu_h

Then, solving the equation:

0.639=\mu_e+\mu_h (1)

0.1436 = 7.6*10^{-3}\mu_e+\mu_h (2)

We have,

Mobility of electron \mu_e = 0.5m^2/V.s

Mobility of hole is \mu_h = 0.14m^2/V.s

6 0
3 years ago
A cantilever beam of length L = 70 in is made from two side-by-side structural-steel channels of size 3 in weighing 5.0 lbf/ft.
natali 33 [55]

Answer:

of 5 lb/ft and a concentrated service live load at midspan. .... length = 12 feet) to support a uniformly distributed load. Taking ... w 7..'{ 'f.- ~ s-·. 344 ft-kip. Fy : s-o ks I. 299 ft-kip. Li.. ::::- I 2.. }-t-. 150 ft-kip ..... The concrete and reinforcing steel properties are ... Neglecting beam self-weight . and based only on the ...... JI : Lf, 2. l.. ;VI.

Explanation:

6 0
3 years ago
A double-pane insulated window consists of two 1 cm thick pieces of glass separated by a 1.8 cm layer of air. The window measure
Elanso [62]

Answer:

(b). T = 22.55 ⁰C

(c). q = 557.8 W

Explanation:

we take follow a step by step process to solving this problem.

from the question, we have that

The two glass pieces is separated by a 1.8 cm distance layer of air.

the thickness of glass piece is 1 cm

width = 4 m

the height = 3 m

(a). the sketch of the thermal circuit is uploaded in the picture below.

(b).  the thermal resistance due to the conduction in the first glass plane is given thus;

R₁ = Lg / Kg A ................(1)

given that Kg rep. the thermal conductivity of the glass plane

A = conduction surface area

Lg = Thickness of glass plane4

taking the thermal conductivity of glass plane as Kg = 0.78 w/mk

inputting values into equation (1) we have,

R₁ = [1 (cm) ˣ 1 (m)/100 (cm)] / [(0.78 w/mk)(4m ˣ 3m)]

R₁ = 1.068 ˣ 10 ⁻³ k/w

Being that we have same thermal resistance in the first and second plane,

therefore R₁ = R₃ = 1.068 ˣ 10 ⁻³ k/w

⇒ Also the thermal resistance between air and glass as a result of the conduction by the layer is given thus

R₂ = La/KaA .....................(2)

given Ka = thermal conductivity of air

A = surface area

La = thickness of air

substituting values into the equation we have

R₂ = [1.8 (cm) ˣ 1 (m)/100 (cm)] / [(0.0262 w/mk)(4m ˣ 3m)]

R₂ = 5.73 ˣ 10⁻² k/w

Given the thermal resistance on the outer surface due to convection, we have

R₄ = 1/hA

inputting value gives R₄ = 1 / (12 w/m² ˣ 12m) = 6.94 ˣ 10⁻³k/w

R₄ = 6.94 ˣ 10⁻³k/w

Finally the sum total of thermal resistance = R₁ + R₂ + R₃ + R₄

R-total = 0.0663 kw

From this we can calculate the rate of heat loss

using  q = Ti - To / R-total ..............(3)

given Ti and To is the inside and outside temperature i.e. 27⁰C and -10⁰C

from equation (3),

q = 27- (-10) / 0.0063 = 557.8 W

q = 557.8 W  

⇒ Applying the heat transfer formula for inside surface glass temperature gives;

q = Ti - T₂ / R₃ + R₄

T₂ = Ti - q (R₃ + R₄)

T₂ = 27 - 557.8 (1.068ˣ10⁻³ + 6.94ˣ10⁻³ ) = 22.55°C

T₂ = 22.55°C

cheers i hope this helps

8 0
3 years ago
Ben İngiliz oldum düzelte bilirmiyim
Lelu [443]

Answer:

What laguange is that?

Explanation:

7 0
2 years ago
Make two lists of applications of matrices, one for those that require jagged matrices and one for those that require rectangula
Agata [3.3K]

Answer:

Explanation:

You can utilize barbed clusters to store inadequate grids. On the off chance that there are a great many lines yet each line has just 4 or 5 associations with different segments, at that point as opposed to utilizing a 1000x1000 cluster you can utilize a 1000 line rough exhibit while you simply store the components that the present section has association with another segment. Other utilization can be done on account of query tables. Query tables will be tables which have different qualities concerning a solitary key where the quantity of qualities isn't fixed. Aside from this, barbed clusters have an exceptionally set number of utilization cases. Multidimensional exhibits then again have plenty of utilizations. It is utilized to store a great deal of information reliably on the grounds that the greater part of the information is put away is steady concerning which section compares to what information. Aside from that it very well may be utilized to make thick diagrams or sparse(not effective), plotting information. Another utilization case would be used as an impermanent stockpiling for the figurings that need to tail them and utilize the past information like in powerful programming.

3 0
3 years ago
Other questions:
  • 1. Create a class called Name that represents a person's name. The class should have fields named firstName representing the per
    8·2 answers
  • Please Help It's really Important
    12·1 answer
  • Three single-phase, 10 kVA, 2400/280 V, 60-Hz transformers are connected to form a three-phase, 2400/480 V transformer The equiv
    15·1 answer
  • Sophia is designing a new welding shop for the local high school. Where should the compressed gas and fuel cylinders be stored?
    15·1 answer
  • Create an abstract class DiscountPolicy. It should have a single abstract method computeDiscount that will return the discount f
    7·1 answer
  • A 0.50 m3 drum was filled with 0.49 m3 of liquid water at 25oC and the remaining volume was water vapor without any air. The dru
    15·1 answer
  • Nguyên lý hoạt động của kim phun
    7·1 answer
  • . An ideal vapor compression refrigeration cycle operates with a condenser pressure of 900 kPa. The temperature at the inlet to
    14·1 answer
  • Question text
    11·1 answer
  • Engineers please help im not good when it comes to drawing​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!