Answer:
of 5 lb/ft and a concentrated service live load at midspan. .... length = 12 feet) to support a uniformly distributed load. Taking ... w 7..'{ 'f.- ~ s-·. 344 ft-kip. Fy : s-o ks I. 299 ft-kip. Li.. ::::- I 2.. }-t-. 150 ft-kip ..... The concrete and reinforcing steel properties are ... Neglecting beam self-weight . and based only on the ...... JI : Lf, 2. l.. ;VI.
Explanation:
Answer:
The difference of head in the level of reservoir is 0.23 m.
Explanation:
For pipe 1
For pipe 2
Q=2.8 l/s
We know that Q=AV
head loss (h)
Now putting the all values
So h=0.23 m
So the difference of head in the level of reservoir is 0.23 m.
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:
It is necessary to get the Reynold's number:
Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:
The overall heat transfer coefficient:
Here
Substituting values:
Your allowed to switch lanes as long as the road is clear and you use signals.