All alcohols are polar.
True
The beaker of acetic acid will cool more quickly.
The specific heat capacity of acetic acid is about half that of water.
Thus, it takes twice as much heat gain (or loss) in acetic acid to cause a given change in temperature.
If everything else is constant and heat is being lost at the same rate, the temperature of the acetic acid should drop twice as fast as that of water.
The question is incomplete, here is a complete question.
An arctic weather balloon is filled with 27.8 L of helium gas inside a prep shed. The temperature inside the shed is 13 ⁰C. The balloon is then taken outside, where the temperature is -9 ⁰C. Calculate the new volume of the balloon. You may assume the pressure on the balloon stays constant at exactly 1 atm. Be sure your answer has the correct number of significant digits.
Answer : The new volume of the balloon is 25.7 L
Explanation :
Charles's Law : It is defined as the volume of the gas is directly proportional to the temperature of the gas at constant pressure and number of moles.

or,

where,
= initial volume of gas = 27.8 L
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the new volume of the balloon is 25.7 L
Answer:
Amount of excess Carbon (ii) oxide left over = 23.75 g
Explanation:
Equation of the reaction: Fe₂O₃ + 3CO ----> 2Fe + 3CO₂
Molar mass of Fe₂O₃ = 160 g/mol;
Molar mass of Carbon (ii) oxide = 28 g/mol
From the equation of reaction, 1 mole of Fe₂O₃ reacts with 3 moles of carbon (ii) oxide; i.e. 160 g of iron (iii) oxide reacts with 84 g (3 * 28 g) of carbon (ii) oxide
450 g of Fe₂O₃ will react with 450 * 84/180) g of carbon (ii) oxide = 236..25 g of carbon (ii) oxide
Therefore the excess reactant is carbon (ii) oxide.
Amount of excess Carbon (ii) oxide left over = 260 - 236.25
Amount of excess Carbon (ii) oxide left over = 23.75 g
I would say 3.0 cause yeah yeah yeah yeah I’m iann Dior